(121c) A Scalable Membrane Pervaporation Approach for Continuous Flow Ring Closing Metathesis
AIChE Annual Meeting
2020
2020 Virtual AIChE Annual Meeting
Pharmaceutical Discovery, Development and Manufacturing Forum
Continuous Processing in Drug Substance Development and Manufacturing
Monday, November 16, 2020 - 8:30am to 8:45am
Using traditional batch techniques, implementing olefin metathesis reactions on the commercial scale has proven challenging, if not impossible. Ring closing reaction mechanisms are commonly used during the preparation of small molecules for the pharmaceutical and fragrance industries. Membranes are a modular, scalable solution that can continuously remove the ethylene byproduct and enable the use of commercial scale continuous ring closing metathesis. This case study details the advantage of using a sheet-in-frame membrane reactor as opposed to a stainless steel tubular reactor. The fluoropolymer membrane has excellent chemical and thermal stability which allows for an extended range of thermal conditions without sacrificing selectivity or flux. Pure ethylene flux of the membrane was also investigated to ensure that the mass transport across the membrane would always be greater than the reactionâs ethylene production rate. Scale up considerations including residence time, required ethylene removal rate and module design will be addressed. The feasibility of using a membrane reactor to remove byproducts shown in this case study is only one example of the reactions that could benefit from the implementation of membrane reactors.