(162av) Pluronic Based Copolymers As 3D Printed Biodegradable Thermoplastic Elastomers for Peripheral Nerve Repair
AIChE Annual Meeting
2020
2020 Virtual AIChE Annual Meeting
Materials Engineering and Sciences Division
Poster Session: Materials Engineering & Sciences (08B - Biomaterials)
Thursday, November 19, 2020 - 8:00am to 9:00am
In this context, our research seeks to use additive manufacturing technologies to create biodegradable and cellular NGCs on demand for the repair of critical-size nerve defects. Recently, 3D printing has been increasingly used in research and medical therapeutics for rational, computer-aided design of biomaterial-based scaffolds with complex architecture. Furthermore, printing with co-axial extruders can enable the direct printing of layered tubular structures for use as NGCs. The NGCs should contain an outer flexible shell that seeks to mimic the mechanical properties of the surrounding biological tissue and enable diffusion of nutrients to support encapsulated cells. The use of biodegradable block copolymers with both hydrophilic and relative hydrophobic functions can provide a flexible, partially-hydrated, biocompatible and bioresorbable NGC shell.
In this study, A-B-A type triblock copolymers of PLLA-Pluronic-PLLA were synthesized using varied ratios of Pluronic and PLLA. The resulting block copolymers were characterized with gel permeation chromatography (GPC), differential scanning calorimetry (DSC), and nuclear magnetic resonance (NMR) to determine molecular weight, polymer structure, and thermal behavior. In addition, equilibrium water content, degradation rates, mechanical properties, and cell response were all evaluated and correlated to polymer structure.