(177c) Energy-Efficient Distillation Configurations: Novel Formulation, Relaxations and Discretizations
AIChE Annual Meeting
2020
2020 Virtual AIChE Annual Meeting
Computing and Systems Technology Division
CAST Director's Student Presentation Award Finalists (Invited Talks)
Monday, November 16, 2020 - 8:30am to 8:45am
We propose a novel Mixed Integer Nonlinear Program (MINLP) to identify configurations that require the least vapor (heat) duty, a metric that acts as a proxy for energy consumption. To address the challenges with solving this model, we make various advances. First, inspired by physical insights, we model the space of admissible configurations in a lifted space by introducing new variables representing specific products of binary variables, where the latter capture the absence or presence of a mixture in a configuration. We show that the proposed model is contained in the convex hull of various important substructures, and it is strictly tighter than prior formulations for configuration choices. Second, we adapt classical Reformulation-Linearization Technique[2] (RLT) to obtain a family of cuts for fractional terms. These cuts are useful, because they exploit the mathematical structure of Underwood constraints. Third, we use simultaneous convexification techniques to construct convex hull of multiple nonconvex terms over polytopes (mass balances). The resulting simultaneous hull is tighter than the set obtained by relaxing nonconvex terms individually over a box. Fourth, the denominator of some fractions in Underwood constraints can approach arbitrarily close to zero. Prior formulations have imposed arbitrary lower bounds on the denominator of such fractions. However, we construct a provably valid relaxation using rigorous bounds that are inferred from cuts derived using our RLT variant. Fifth, we employ piecewise relaxation techniques by discretizing the domain of Underwood roots. Here, we adaptively partition the region by introducing partition points, where we suspect optimal Underwood roots lie, while ensuring exhaustiveness of the partitioning scheme, until we prove optimality. The proposed formulation, with all the above improvements, provides the first ever system to identify, for further exploration, a few attractive configurations reliably. In particular, the proposed method solves 72% of cases in the test set within 1200 s, and all 496 cases are solved within 1%-optimality in less than five hours.
[1] Nallasivam, U., Shah, V.H., Shenvi, A.A., Tawarmalani, M. and Agrawal, R., 2013. Global optimization of multicomponent distillation configurations: 1. Need for a reliable global optimization algorithm. AIChE Journal, 59(3), pp.971-981.
[2] Sherali, H.D. and Alameddine, A., 1992. A new reformulation-linearization technique for bilinear programming problems. Journal of Global optimization, 2(4), pp.379-410.