(19h) Bifunctional Ru@N-Doped Mesoporous Carbon Catalysts for Catalytic Transfer Hydrogenolysis of Bio-Derived Polyols
AIChE Annual Meeting
2020
2020 Virtual AIChE Annual Meeting
Catalysis and Reaction Engineering Division
Fundamentals and Strategies for Catalytic Biomass Conversion
Monday, November 16, 2020 - 9:30am to 9:45am
Aqueous phase hydrogenation process is considered to be the most promising route for biomass conversion. But high temperatures (> 400 oC) and high H2 pressure (> 4 MPa) make the side reactions very intense, leading to poor atomic utilization economics.4 The operating conditions of the catalytic transfer hydrogenolysis process are much milder, using H2 generated from water or renewable resources, so the energy consumption is small, the atomic utilization rate is high (~100%) and the environmental pollution is small.
According to our literature review, it is found that current studies on transfer hydrogenolysis of polyols involve alkaline species as promoters for simultaneous H2 generation and hydrogenolysis reactions, which unfavorably cause corrosion and additional costs for product separation. In this work, we proposed a series of nitrogen doped mesoporous carbon (NMC) for efficient transfer hydrogenolysis of glycerol to propylene glycol. The unique interaction between Ru-nitrogen sites is key for anchoring of Ru particles on the inner and outer surfaces of the NMC. While metallic sites are active for H2 production (C-H cleavage), H2 transfer and hydrogenation (C-O cleavage) properties, the basic sites provided from NMC facilitate C-H and C-O bond cleavage during transfer hydrogenolysis of glycerol. The conversion of glycerol and the selectivity of 1,2-PDO are 45.1% and 46.7% at 200 oC , under N2 atmosphere. Detailed characterization by XRD, XPS, TEM and BET will be conducted to reveal the structural features and correlated with catalytic performances.