(317c) Thermal Atomic Layer Deposition of Gold Nanoparticles for Catalysis: High-Precision & Scalable Production
AIChE Annual Meeting
2020
2020 Virtual AIChE Annual Meeting
Particle Technology Forum
Novel Nanoparticles and Nanostructured Materials for Catalysis
Thursday, November 19, 2020 - 8:30am to 8:45am
Here we present a low temperature (105 °C) thermal atomic layer deposition approach for depositing gold nanoparticles on TiO2 with controlled size and loading using trimethylphosphino-trimethylgold (III) and two co-reactants (ozone and water) in a fluidized bed reactor. We show that the exposure time of the precursors is a variable that can be used to decouple the Au particle size from the Au loading. Longer exposures of water broaden the particle size distribution while longer exposures of ozone narrow it [5]. By studying the photocatalytic activity of Au/TiO2 nanocomposites we show how the ability to control particle size and loading independently can be used not only to enhance performance but also to investigate structure-property relationships. This study provides insights into the mechanism underlying the formation and evolution of Au nanoparticles prepared for the first time via vapor phase atomic layer deposition. Employing a vapor deposition technique for the synthesis of Au/TiO2 nanocomposites eliminates the shortcomings of conventional liquid-based processes opening up the possibility of highly controlled synthesis of materials at large scale [6].
[1] Valden, M., Lai, X., & Goodman, D. W. (1998). Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. science, 281(5383), 1647-1650.
[2] Li, L., Larsen, A. H., Romero, N. A., Morozov, V. A., Glinsvad, C., Abild-Pedersen, F., Greeley, J., Jacobsen, K.W & Nørskov, J. K. (2013). Investigation of catalytic finite-size-effects of platinum metal clusters. The journal of physical chemistry letters, 4(1), 222-226.
[3] Griffiths, M. B., Pallister, P. J., Mandia, D. J., & Barry, S. T. (2016). Atomic layer deposition of gold metal. Chemistry of Materials, 28(1), 44-46.
[4] Makela, M., Hatanpaa, T., Mizohata, K., Raisanen, J., Ritala, M., & Leskela, M. (2017). Thermal atomic layer deposition of continuous and highly conducting gold thin films. Chemistry of Materials, 29(14), 6130-6136.
[5] Hashemi, F. S. M., Grillo, F., Ravikumar, V., Benz, D., Shekhar, A., Griffiths, M., Barry, S. & van Ommen, J. R. (2020). Thermal Atomic Layer Deposition of Gold Nanoparticles: Controlled Growth and Size Selection for Photocatalysis. Nanoscale, accepted.
[6] van Ommen, J. R., & Goulas, A. (2019). Atomic layer deposition on particulate materials. Materials Today Chemistry, 14, 100183.