(334br) Polyelectrolyte Surface Diffusion in a Nano-Slit Geometry
AIChE Annual Meeting
2020
2020 Virtual AIChE Annual Meeting
Meet the Candidates Poster Sessions
Meet the Industry Candidates Poster Session: Pharmaceutical Discovery, Development and Manufacturing Forum
Tuesday, November 17, 2020 - 8:00am to 9:00am
Intermittent (âhoppingâ) surface diffusion of poly-L-lysine in a nanoslit was studied using single-molecule tracking microscopy. Three surface chemistries were employed to understand the interplay of long-range electrostatic attraction and short-range interactions: an amine-functionalized silica surface, an oligo(ethylene oxide) (OEG) modified surface, and an equally mixed surface. Diffusion increased rapidly with slit height until saturating for values <30 nm. While diffusion at a semi-infinite interface was significantly faster for OEG surfaces, the diffusion increased most rapidly with slit height for amine-functionalized surfaces, resulting in surface diffusion that was virtually independent of surface chemistry in gaps <15nm. Kinetic Monte Carlo simulations, using parameters obtained empirically from diffusion at a single interface, suggested that these trends were primarily due to strong H-bonding interactions between PLL and amine surface ligands, which led to increased rates of re-adsorption after hops and longer waiting periods between flights, and that long-range electrostatic attraction had a minor influence.
Checkout
This paper has an Extended Abstract file available; you must purchase the conference proceedings to access it.
Do you already own this?
Log In for instructions on accessing this content.
Pricing
Individuals
AIChE Pro Members | $150.00 |
AIChE Emeritus Members | $105.00 |
AIChE Graduate Student Members | Free |
AIChE Undergraduate Student Members | Free |
AIChE Explorer Members | $225.00 |
Non-Members | $225.00 |