(384f) Tandem Oxidative Chemical Transformations Using Electrochemically Produced Hydrogen Peroxide
AIChE Annual Meeting
2020
2020 Virtual AIChE Annual Meeting
Catalysis and Reaction Engineering Division
Reaction Chemistry and Engineering II
Wednesday, November 18, 2020 - 9:00am to 9:15am
Herein, we describe the development of combined schemes to electrochemically produce H2O2 from O2 and directly use it in molecularly catalyzed oxidation reactions. Development of tandem electro- and molecular catalytic reactors for chemical production requires active and selective catalytic materials, but also depends on careful tuning of the reaction environment. Using a rotating ring disk electrode, CMK-3 carbon electrocatalyst, and electrolyte pH between 1-6, we found that overpotential was minimized and highest H2O2 selectivity was achieved for K2SO4 electrolyte compared to other alkali sulfates and acetates.
We next studied the oxidation of cyclohexanol using H2O2 solutions representative of those formed during electrochemical reduction of O2. Following published reports, reactions were carried out in agitated 2-phase mixtures of cyclohexanol and H2O2 at 90°C with H2WO4 as the catalyst. Oxidation yielded several C6 oxygenates including cyclohexanone, hexanoic acid, and eventually adipic acid. Under these conditions, conversion rates were approximately first order in H2O2 concentration and there was no dependence on sulfate concentration. Interestingly, we found reaction rates increased with added K2SO4 electrolyte, which is promising for tandem oxidation schemes. An improved fundamental understanding of this reaction system might enable broader implementation of sustainable pathways for industrial chemical synthesis.