(438a) Robotic Platform for Execution, Analysis, and Optimization of Multistep Reactions in Continuous Flow
AIChE Annual Meeting
2020
2020 Virtual AIChE Annual Meeting
Catalysis and Reaction Engineering Division
Reaction Engineering in Pharmaceuticals and Fine Chemicals
Thursday, November 19, 2020 - 8:00am to 8:15am
Here, we present a robotically reconfigurable flow chemistry platform capable of executing, analyzing, and optimizing multistep reactions. The platform contains a library of process modules that can be placed in any order onto a process stack by the robot for performing reactions, separations, and inline analysis (liquid chromatographyâmass spectrometry (LC-MS) and Fourier transform infrared (FT-IR) spectroscopy). Reagents are delivered to the process stack via reconfigurable fluidic connections which the robot can place onto a reagent âswitchboardâ, enabling switching between multiple reagent candidates. The hardware was coupled to an optimization algorithm that employs optimal design of experiments (DoE) to intelligently navigate the design space with as few experiments as possible, and branch and bound (B&B) to handle discrete variables in addition to continuous variables [4]. The LC-MS and FT-IR modules were utilized simultaneously in multistep syntheses to analyze the process at multiple locations, providing reaction-specific information. Several case studies highlight the platformâs capabilities for chemical synthesis and explore the question of how to find globally optimal reaction conditions for multistep flow synthesis.