(450b) Invited Talk: Entropy Source Analysis for Ferrites in Two-Step Thermochemical Splitting of Water and Carbon Dioxide
AIChE Annual Meeting
2020
2020 Virtual AIChE Annual Meeting
Sustainable Engineering Forum
Symposium on Solar Power and Chemical Systems in Honor of Prof. Aldo Steinfeld II
Monday, November 16, 2020 - 2:45pm to 3:00pm
Two-step thermochemical splitting of water and CO2 has shown promise for large-scale operation due to its relative simplicity. The main challenges for reducing cost in the two-step thermochemical cycle include very high thermal reduction temperatures, low H2O-to-H2 (and CO2-to-CO) conversion and limited oxygen-exchange reaction capacity. The thermodynamics of metal oxides for these reactions holds the key to achieving the needed performance. This research will present a deeper thermodynamic understanding of solid-solid metal oxide phase transitions, which forms the foundation for controlling these reactions.
For a metal oxide to spontaneously conduct both thermal reduction and water splitting reactions, increasing its hO and sO (partial molar enthalpy and entropy of oxygen, respectively) is necessary for lowering temperatures and improving H2O-to-H2 (and CO2-to-CO) conversion. While state-of-the-art metal oxides for these reactions have hO values spanning a large range, sO values usually fall in a narrow range and their manipulation has remained poorly understood and difficult. Therefore, analyzing sources of sO is critical for directing materials design.
Recently, iron-poor (Fe-poor) ferrites (FeyM1-yOx where y < 2/3 and M is another one or more metals) were found to split CO2 with unusually high yield compared to traditional Fe-rich ferrites, where Fe is the redox active element. The exceptional performance is achieved through tuning solid-solid phase transitions by changing the Fe:M ratio; specifically, Fe-poor ferrites show advantageous thermodynamic properties compared to the traditional Fe-rich ones. However, the fundamental sources of solid-state entropy change have not yet been analyzed. Here we have used Fe0.45Co0.55Ox1 and Fe2/3Co1/3Ox2 as model materials to quantify the entropic driving forces of the oxygen exchange reactions. Cation configurational entropy is determined by resonant x-ray diffraction measurements and CALPHAD-FactSage thermodynamic simulations. Lattice vibrational entropy is quantified by first-principles calculations using Hubbard-corrected density functional theory. Both sources are found to be important as components of entropic driving forces and the analysis explains the advantageous performance of Fe-poor ferrites compared to traditional Fe-rich ones.