(554g) Early-Stage Evaluation Procedure for CO2 Utilization Technologies at Low Technology Readiness Levels: A Case Study for Electrochemical Production of Ethylene
AIChE Annual Meeting
2020
2020 Virtual AIChE Annual Meeting
Computing and Systems Technology Division
Process Design in Energy and Sustainability I
Tuesday, November 17, 2020 - 9:30am to 9:45am
We propose a systematic and comprehensive procedure for the early-stage evaluation of emerging CU technologies. More specifically, we employ the TRL scale and focus on TRL 2â4. The procedure consists of three steps: 1. data preparation, 2. data calculation, and 3. performance indicator calculation. The performance indicators are grouped into five categories: material, energy, GHG reduction, economics, and combined GHG reduction and economics. The procedure also depends on the type of CU technology, namely, thermochemical, electrochemical, and biological CO2 conversion. We demonstrate the proposed procedure on co-electrolysis of CO2 and H2O for ethylene production10,11, which is studied as if it were at TRL 2, 3, and 4. We conceptually design the ethylene production process (for the analysis at TRL 4). Then we calculate the performance indicators to discuss how the evaluation outcomes evolve with increasing TRL.
Reference
- Kätelhön A, Meys R, Deutz S, Suh S, Bardow A. Climate change mitigation potential of carbon capture and utilization in the chemical industry. Proc Natl Acad Sci. 2019;116(23):11187-11194. doi:10.1073/pnas.1821029116
- Roh K, AlâHunaidy AS, Imran H, Lee JH. Optimizationâbased identification of CO2 capture and utilization processing paths for life cycle greenhouse gas reduction and economic benefits. AIChE J. 2019;65(7):e16580. doi:10.1002/aic.16580
- Zimmermann AW, Schomäcker R. Assessing Early-Stage CO2 utilization TechnologiesâComparing Apples and Oranges? Energy Technol. 2017;5(6):850-860. doi:10.1002/ente.201600805
- Carbon Recycling International. Carbon Recycling International. http://www.carbonrecycling.is/. Published 2018. Accessed June 6, 2018.
- von der Assen N, Bardow A. Life cycle assessment of polyols for polyurethane production using CO2 as feedstock: insights from an industrial case study. Green Chem. 2014;16(6):3272. doi:10.1039/c4gc00513a
- Sunfire GmbH. Sunfire - Syngas. https://www.sunfire.de/en/. Published 2018. Accessed June 9, 2018.
- Rönsch S, Schneider J, Matthischke S, et al. Review on methanation â From fundamentals to current projects. Fuel. 2016;166:276-296. doi:10.1016/j.fuel.2015.10.111
- Zimmermann A, Wunderlich J, Buchner G, et al. Techno-Economic Assessment & Life-Cycle Assessment Guidelines for CO2 Utilization.; 2018. doi:10.3998/2027.42/145436
- Ulonska K, Skiborowski M, Mitsos A, Viell J. Early-stage evaluation of biorefinery processing pathways using process network flux analysis. AIChE J. 2016;62(9):3096-3108. doi:10.1002/aic.15305
- Yano H, Tanaka T, Nakayama M, Ogura K. Selective electrochemical reduction of CO2 to ethylene at a three-phase interface on copper(I) halide-confined Cu-mesh electrodes in acidic solutions of potassium halides. J Electroanal Chem. 2004;565(2):287-293. doi:10.1016/j.jelechem.2003.10.021
- Vennekoetter J-B, Sengpiel R, Wessling M. Beyond the catalyst: How electrode and reactor design determine the product spectrum during electrochemical CO2 reduction. Chem Eng J. 2019;364(September 2018):89-101. doi:10.1016/j.cej.2019.01.045