(149f) Renewable Polymers Via Direct Functionalization of Lignocellulosic Sugars
AIChE Annual Meeting
2021
2021 Annual Meeting
Process Development Division
Renewable Polymers and Intermediates Technology
Monday, November 8, 2021 - 2:10pm to 2:30pm
References:
1. Zhu, Y., Romain, C. & Williams, C. K. Sustainable polymers from renewable resources. Nature 540, 354â362 (2016).
2. Zhang, X., Fevre, M., Jones, G. O. & Waymouth, R. M. Catalysis as an Enabling Science for Sustainable Polymers. Chem. Rev. 118, 839â885 (2018).
3. Vilela, C. et al. The quest for sustainable polyesters â insights into the future. Polym. Chem. 5, 3119â3141 (2014).
4. Isikgor, F. H. & Becer, C. R. Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers. Polym. Chem. 6, 4497â4559 (2015).
5. Grignard, B., Gennen, S., Jérôme, C., Kleij, A. W. & Detrembleur, C. Advances in the use of CO 2 as a renewable feedstock for the synthesis of polymers. Chem. Soc. Rev. 48, 4466â4514 (2019).
6. Hillmyer, M. A. The promise of plastics from plants. Science 358, 868â870 (2017).
7. Shuai, L. et al. Formaldehyde stabilization facilitates lignin monomer production during biomass depolymerization. Science 354, 329â333 (2016).
8. Questell-Santiago, Y. M., Zambrano-Varela, R., Talebi Amiri, M. & Luterbacher, J. S. Carbohydrate stabilization extends the kinetic limits of chemical polysaccharide depolymerization. Nature Chemistry 10, 1222â1228 (2018).
9. Lan, W., Amiri, M. T., Hunston, C. M. & Luterbacher, J. S. Protection Group Effects During α,γ-Diol Lignin Stabilization Promote High-Selectivity Monomer Production. Angewandte Chemie International Edition 57, 1356â1360 (2018).