(237f) From First-Principles Calculations to Data-Driven Discovery and Materials Design of Mxene Electrocatalysts
AIChE Annual Meeting
2021
2021 Annual Meeting
Catalysis and Reaction Engineering Division
Electrochemistry and Electrocatalysis
Monday, November 8, 2021 - 5:30pm to 5:48pm
Using first-principles calculations, we generate a dataset from 350 unique MXenes interacting with 7 adsorbates corresponding to intermediates of the HER and NRR over up to 4 unique symmetries consisting of 3475 entries. We develop a data science pipeline used to clean, scale, and reduce the feature to the most important features. Both linear and decision-based models provided discernment between bare and functionalized MXenes, different adsorbates, and the specific terminating atoms as subsets to formalize the decision tree ensembles. Features belonging to the terminating atom and the specific *NxHy adsorbate were identified as crucial parameters needed to predict the adsorption energy. Further exploration of the data demonstrates generalizability through testing metrics and the visualization of the materials landscape through principal component analysis. We successfully applied the model to predict and capture trends in reactivity across 700 tuned MXene materials of interest, identifying sulfidation and supporting/straining as strategies to improve their nitrogen reduction activity.
This study provides insight for future research into developing models to capture reactivities using accessible DFT descriptors from featurizing the local atomic environment near the adsorption site of the materials. Furthermore, invaluable data and crucial analyses for designing materials and substances with high chemical activity are contributed to the 2D materials and catalysis communities.