(284e) Quantimpy: Minkowski Functionals and Functions with Python
AIChE Annual Meeting
2021
2021 Annual Meeting
Computing and Systems Technology Division
Advances in Computational Methods and Numerical Analysis II
Tuesday, November 9, 2021 - 1:27pm to 1:46pm
References
[1] R. T. Armstrong, J. E. McClure, V. Robins, Z. Liu, C. H. Arns, S. Schlüter, and S. Berg. Porous media characterization using minkowski functionals: Theories, applications and future directions. Transport in Porous Media, pages 1â31, 2018.
[2] A. M. P. Boelens. quantimpy pypi. https://pypi.org/project/quantimpy/, 2021.
[3] A. M. P. Boelens. Welcome to quantimpyâs documentation! https://boeleman.github.io/quantimpy, 2021.
[4] P. F. Felzenszwalb and D. P. Huttenlocher. Distance transforms of sampled functions. Theory of computing, 8(1):415â428, 2012.
[5] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, et al. Array programming with numpy. Nature, 585(7825):357â362, 2020.
[6] A. G. Korpi, Å. Å¢Älu, M. Bramowicz, A. Arman, S. Kulesza, B. Pszczolkowski, S. JureÄka, M. Mardani, C. Luna, P. Balashabadi, et al. Minkowski functional characterization and fractal analysis of surfaces of titanium nitride films. Materials Research Express, 6(8):086463, 2019.
[7] K. R. Mecke. Additivity, convexity, and beyond: applications of minkowski functionals in statistical physics. In Statistical Physics and Spatial Statistics, pages 111â184. Springer, 2000.
[8] J. Ohser and F. Mücklich. Statistical analysis of microstructures in materials science. Wiley and Sons, 2000.
[9] P. A. Slotte, C. F. Berg, and H. H. Khanamiri. Predicting resistivity and permeability of porous media using minkowski functionals. Transport in Porous Media, 131(2):705â722, 2020.
[10] H.-J. Vogel, U. Weller, and S. Schlüter. Quantification of soil structure based on minkowski functions. Computers & Geosciences, 36(10):1236â1245, 2010.