(582f) Towards Process-Materials Co-Optimization: Automatic Generation of Optimizable MOF Structure-Function Relationships
AIChE Annual Meeting
2021
2021 Annual Meeting
Separations Division
Molecular and Data Science Modeling of Adsorption II
Monday, November 15, 2021 - 2:30pm to 2:50pm
We illustrate our proposed workflow with MOF structures and adsorption data obtained from the hMOF database7,8. We first generate a pool of descriptors, including pore geometries (e.g., pore size distribution, pore volumes) via the Zeo++ toolkit9 and structural identities (e.g., topology, building blocks) via the MOFid algorithm10. We are able to reconstruct a MOFâs molecular structure from its vector of descriptors, which is critical for MOF structure optimization. We then exploit the adsorption data by fitting them into the dual-site Langmuir (DSL) equation, which is commonly utilized in process optimization to describe adsorption equilibria4. For this, we take advantage of parameter estimation routines available within the IDAES Integrated Platform11 to automate the DSL parameter fitting process. Finally, we learn a surrogate model that satisfactorily links the MOFs descriptors (i.e., features) with the DSL parameters (i.e., targets) using the ALAMO suite12,13. This workflow leverages state-of-the-art open-source tools and is highly automated. The resulting predictive structure-function relationships enable the inverse design of a MOFâs molecular structure from its process-level adsorption properties. It can thus be easily integrated into optimization models for process design, realizing process-materials co-optimization in a common framework.
References
(1) Zhao, D.; Yuan, D.; Zhou, H.-C. The Current Status of Hydrogen Storage in MetalâOrganic Frameworks. Energy & Environmental Science 2008, 1 (2), 222â235.
(2) Simmons, J. M.; Wu, H.; Zhou, W.; Yildirim, T. Carbon Capture in MetalâOrganic Frameworksâa Comparative Study. Energy & Environmental Science 2011, 4 (6), 2177â2185.
(3) Colón, Y. J.; Snurr, R. Q. High-Throughput Computational Screening of MetalâOrganic Frameworks. Chemical Society Reviews 2014, 43 (16), 5735â5749.
(4) Farmahini, A. H.; Krishnamurthy, S.; Friedrich, D.; Brandani, S.; Sarkisov, L. From Crystal to Adsorption Column: Challenges in Multiscale Computational Screening of Materials for Adsorption Separation Processes. Industrial & Engineering Chemistry Research 2018, 57 (45), 15491â15511.
(5) Khurana, M.; Farooq, S. Integrated Adsorbent-Process Optimization for Carbon Capture and Concentration Using Vacuum Swing Adsorption Cycles. AIChE Journal 2017, 63 (7), 2987â2995.
(6) Khurana, M.; Farooq, S. Integrated Adsorbent Process Optimization for Minimum Cost of Electricity Including Carbon Capture Bya VSA Process. AIChE Journal 2019, 65 (1), 184â195.
(7) Wilmer, C. E.; Farha, O. K.; Bae, Y.-S.; Hupp, J. T.; Snurr, R. Q. StructureâProperty Relationships of Porous Materials for Carbon Dioxide Separation and Capture. Energy & Environmental Science 2012, 5 (12), 9849â9856.
(8) Bobbitt, N. S.; Chen, J.; Snurr, R. Q. High-Throughput Screening of MetalâOrganic Frameworks for Hydrogen Storage at Cryogenic Temperature. The Journal of Physical Chemistry C 2016, 120 (48), 27328â27341.
(9) Willems, T. F.; Rycroft, C. H.; Kazi, M.; Meza, J. C.; Haranczyk, M. Algorithms and Tools for High-Throughput Geometry-Based Analysis of Crystalline Porous Materials. Microporous and Mesoporous Materials 2012, 149 (1), 134â141.
(10) Bucior, B. J.; Rosen, A. S.; Haranczyk, M.; Yao, Z.; Ziebel, M. E.; Farha, O. K.; Hupp, J. T.; Siepmann, J. I.; Aspuru-Guzik, A.; Snurr, R. Q. Identification Schemes for MetalâOrganic Frameworks to Enable Rapid Search and Cheminformatics Analysis. Crystal Growth & Design 2019, 19 (11), 6682â6697.
(11) Gunter, D. K.; Agarwal, D. A.; Beattie, K. S.; Boverhof, J. R.; Cholia, S.; Cheah, Y.-W.; Elgammal, H.; Sahinidis, N. V.; Miller, D.; Siirola, J.; others. Institute for the Design of Advanced Energy Systems Process Systems Engineering Framework (IDAES PSE Framework); Lawrence Berkeley National Lab.(LBNL), Berkeley, CA (United States), 2018.
(12) Cozad, A.; Sahinidis, N. V.; Miller, D. C. Learning Surrogate Models for Simulation-Based Optimization. AIChE Journal 2014, 60 (6), 2211â2227.
(13) Cozad, A.; Sahinidis, N. V. A Global MINLP Approach to Symbolic Regression. Mathematical Programming 2018, 170 (1), 97â119.