(652c) Systematic Evaluation of Isoflavone Extraction from Soybean Meal
AIChE Annual Meeting
2021
2021 Annual Meeting
Process Development Division
General Session: Process Development I - Virtual
Monday, November 15, 2021 - 8:32am to 8:48am
Figure 1A displays the optimal pathway to extract and purify isoflavone from soybean meal at the commercial scale. The commercial-scale extraction of isoflavone from soybean meal presents a feasible solution by grinding (GRD), turbo-extraction (TE), filtration (FLT,1), drying (DRY,1), acid hydrolysis (AHY), neutralization (NT), filtration (FLT,2), organic solvent nanofiltration (OSN), and drying (DRY,2). The analysis of each model considered material and energy balances, utilities, design options, industrial constraints, and costs. Figure 1B and 1C presents a cost evaluation of the isoflavone extraction process under two scenarios with and without internal material recovery. The overall process cost can be minimized by reusing material when possible. By analyzing alternative options simultaneously, this study shows that commercial-scale extraction of soy isoflavones can be economically viable without detrimentally impacting the environment.
References
[1] E. D. Hernandez, A. W. Bassett, J. M. Sadler, J. J. La Scala, and J. F. Stanzione, âSynthesis and Characterization of Bio-based Epoxy Resins Derived from Vanillyl Alcohol,â ACS Sustain. Chem. Eng., vol. 4, no. 8, pp. 4328â4339, Aug. 2016, doi: 10.1021/acssuschemeng.6b00835.
[2] S. Curia et al., âBetulin-based thermoplastics and thermosets through sustainable and industrially viable approaches: new insights for the valorization of an underutilized resource,â ACS Sustain. Chem. Eng., Sep. 2019, doi: 10.1021/acssuschemeng.9b03471.
[3] E. A. Baroncini, âBio-Based Thiol-ene Polymer Electrolytes,â Rowan University, NJ, 2019.
[4] A. W. Bassett et al., âSynthesis and characterization of molecularly hybrid bisphenols derived from lignin and CNSL: Application in thermosetting resins,â Eur. Polym. J., vol. 111, pp. 95â103, Feb. 2019, doi: 10.1016/j.eurpolymj.2018.12.015.
[5] J. R. Mauck et al., âPreparation and Characterization of Highly Bio-Based Epoxy Amine Thermosets Derived from Lignocellulosics,â Macromol. Chem. Phys., vol. 218, no. 14, p. 1700013, Jul. 2017, doi: 10.1002/macp.201700013.
[6] J. F. Stanzione III, J. M. Sadler, J. J. La Scala, K. H. Reno, and R. P. Wool, âVanillin-based resin for use in composite applications,â Green Chem., vol. 14, no. 8, p. 2346, 2012, doi: 10.1039/c2gc35672d.
[7] National Agricultural Statistics Service (NASS), âCrop Production,â United States Department of Agriculture (USDA), 2018. Accessed: Oct. 04, 2019. [Online]. Available: https://www.nass.usda.gov/Publications/Todays_Reports/reports/crop0918.pdf.
[8] S. Joy et al., âThe Isoflavone Equol Mediates Rapid Vascular Relaxation: Ca2+ -INDEPENDENT ACTIVATION OF ENDOTHELIAL NITRIC-OXIDE SYNTHASE/Hsp90 INVOLVING ERK1/2 AND Akt PHOSPHORYLATION IN HUMAN ENDOTHELIAL CELL,â J. Biol. Chem., vol. 281, no. 37, pp. 27335â27345, Sep. 2006, doi: 10.1074/jbc.M602803200.
[9] R. L. Birru et al., âThe impact of equol-producing status in modifying the effect of soya isoflavones on risk factors for CHD: a systematic review of randomised controlled trials,â J. Nutr. Sci., vol. 5, 2016, doi: 10.1017/jns.2016.18.
[10] J. Dai et al., âHigh-Performing and Fire-Resistant Biobased Epoxy Resin from Renewable Sources,â ACS Sustain. Chem. Eng., vol. 6, no. 6, pp. 7589â7599, Jun. 2018, doi: 10.1021/acssuschemeng.8b00439.
[11] J. Dai, N. Teng, J. Liu, J. Feng, J. Zhu, and X. Liu, âSynthesis of bio-based fire-resistant epoxy without addition of flame retardant elements,â Compos. Part B Eng., vol. 179, p. 107523, Dec. 2019, doi: 10.1016/j.compositesb.2019.107523.
[12] L. Y. Yoshiara, T. B. Madeira, F. Delaroza, J. B. da Silva, and E. I. Ida, âOptimization of soy isoflavone extraction with different solvents using the simplex-centroid mixture design,â Int. J. Food Sci. Nutr., vol. 63, no. 8, pp. 978â986, Dec. 2012, doi: 10.3109/09637486.2012.690026.
[13] T. N. T. Tran et al., âOptimization of isoflavones extraction from soybeans using full factorial design,â J. Food Process. Preserv., vol. 43, no. 9, p. e14078, 2019, doi: 10.1111/jfpp.14078.
[14] S. H. Yuliani, M. R. Gani, E. P. Istyastono, and F. D. O. Riswanto, âOptimization of genistein and daidzein extraction,â J. Pharm. Pharmacogn. Res., vol. 4, pp. 231â241, 2018.
[15] J. Chea, A. Lehr, J. Stengel, M. J. Savelski, C. S. Slater, and K. Yenkie, âEvaluation of Solvent Recovery Options for Economic Feasibility through a Superstructure-Based Optimization Framework,â Ind. Eng. Chem. Res., Mar. 2020, doi: 10.1021/acs.iecr.9b06725.
[16] K. M. Yenkie, W. Wu, R. L. Clark, B. F. Pfleger, T. W. Root, and C. T. Maravelias, âA roadmap for the synthesis of separation networks for the recovery of bio-based chemicals: Matching biological and process feasibility,â Biotechnol. Adv., vol. 34, no. 8, pp. 1362â1383, Dec. 2016, doi: 10.1016/j.biotechadv.2016.10.003.