(679c) Using Hips As a New Mixing Model to Study Differential Diffusion of Scalar Mixing in Turbulent Flows
AIChE Annual Meeting
2021
2021 Annual Meeting
North American Mixing Forum
Advances in Computational Tools for the Analyses of Mixing Processes
Monday, November 15, 2021 - 4:20pm to 4:45pm
Mixing two or more streams is ubiquitous in chemical processes and industries involving turbulent liquid or gaseous flows. Modeling turbulent mixing flows is complicated due to a wide range of time and length scales, and non-linear processes, especially when reaction is involved. On the other hand, in turbulent reacting flows, sub-grid scales need to be resolved accurately because they involve reactive and diffusive transport processes. Transported PDF methods use mixing models to capture the interaction in the sub-grid scales. Several models have been used with varying success. In this study, we present a novel model for simulation of turbulent mixing called Hierarchical Parcel Swapping (HiPS). The HiPS model is a stochastic mixing model that resolves a full range of time and length scales with the reduction in the complexity of modeling turbulent reacting flows. This model can be used as a sub-grid mixing model in PDF transport methods, as well as a standalone model. HiPS can be applied to transported scalars with variable Schmidt numbers to capture the effect of differential diffusion which is important for modeling scalars with low diffusivity like soot. We present an overview of the HiPS model, its formulation for variable Schmidt number flows, and then present results for evaluating the turbulence properties including the scalar energy spectra, the scalar dissipation rate, and Richardson dispersion. These model developments are an important step in applying HiPS to more complex flow configurations.