(730e) Electrochemical Reduction of Carbon Dioxide By Means of Transition Metal Infiltrated Cathodes in Solid Oxide Electrolyzer Cells
AIChE Annual Meeting
2021
2021 Annual Meeting
Sustainable Engineering Forum
Novel Approaches to CO2 Utilization II
Wednesday, November 17, 2021 - 1:20pm to 1:35pm
Commercially, CO is produced either by steam reforming of gaseous hydrocarbons or by gasification of heavy hydrocarbons (liquids and solids), where it is produced along with hydrogen (H2) to form synthetic gas mixture (syngas) [1]. Pure CO is obtained by separating it from the syngas mixture using different techniques such as cryogenic separation, pressure swing adsorption (PSA), and membrane separation [1,2]. The aforementioned techniques are energy intensive requiring large, centralized facilities to achieve favorable economics. CO2 electrolysis has shown to be a viable option for CO production due to its simplicity and low operating cost. High temperature CO2 electrolysis utilizing solid oxide fuel cell (SOFC) technology offers enhanced reaction kinetics and high cell efficiencies at high temperatures, potentially offering a cost-effective modular alternative which can be integrated into industrial settings [3].
OHIO, with support from the U.S. Department of Energy [DE-FE0031709], is developing a solid oxide electrolyzer cell (SOEC) to convert CO2 into more valuable products such as CO. In this study, SOEC cathodes were fabricated using various transition metal electrocatalysts (cobalt, copper, and nickel) infiltrated into a porous Gd0.10Ce0.90O1.95 (GDC-10) scaffold, while (La0.80Sr0.20)0.95MnO3 (LSM20) was used for the anode fabrication. The electrochemical performance of the transition metal-based electrocatalysts were evaluated at different temperatures (750, 800, and 850 °C) by supplying a blend of CO2, CO, and N2 (81% CO2, 10% CO, 9% N2) on the cathode side and air on the anode side. The fabrication techniques as well as the electrochemical performance of the transition metal electrocatalysts will be discussed in this presentation.
[1] Wilbur, S.; Williams, M.; Williams, R.; Scinicariello, F.; Klotzbach, J. M.; Diamond, G. L.; Citra, M. Toxicological Profile for Carbon Monoxide. Agency for Toxic Substances and Disease Registry (ATSDR) Toxicological Profiles; Agency for Toxic Substances and Disease Registry (US): Atlanta (GA), 2012.
[2] Poudel, J.; Choi, J.; Oh, S. Process Design Characteristics of Syngas (CO/H2) Separation Using Composite Membrane. Sustainability 2019, 11 (3), 703.
[3] Ebbesen, S. D.; Mogensen, M. Electrolysis of Carbon Dioxide in Solid Oxide Electrolysis Cells. J. Power Sources 2009, 193 (1), 349â358.