(140e) Data-Driven Modeling to Predict the Physical Properties of the Lubricant
AIChE Annual Meeting
2022
2022 Annual Meeting
Process Development Division
Physical Properties for Chemical Product and Process Design
Monday, November 14, 2022 - 2:10pm to 2:35pm
Literature cited:
[1] Martini A, Ramasamy US, Len M. Review of Viscosity Modifier Lubricant Additives. Tribol Lett. 2018;66(2):1-14. doi:10.1007/s11249-018-1007-0
[2] MarinoviÄ S, JukiÄ A, Doležal D, Å pechar B, KritoviÄ M. Prediction of used lubricating oils properties by infrared spectroscopy using multivariate analysis. Goriva I Maz. 2012;51(3):205-215. http://hrcak.srce.hr/index.php?show=clanak&id_clanak_jezik=132656
[3] Joo C, Park H, Kim J. Development of physical property prediction models for polypropylene composites with optimizing random forest hyperparameters. 2021;(January). doi:10.1002/int.22700
[4] Liu W, Li M, Zhang M, et al. Estimating leaf mercury content in Phragmites australis based on leaf hyperspectral reflectance. Ecosyst Heal Sustain. 2020;6(1). doi:10.1080/20964129.2020.1726211
[5] Bentéjac C, CsörgÅ A, MartÃnez-Muñoz G. A Comparative Analysis of Gradient Boosting Algorithms. Vol 54. Springer Netherlands; 2021. doi:10.1007/s10462-020-09896-5
[6] Zhang Y, Zhao Z, Zheng J. CatBoost: A new approach for estimating daily reference crop evapotranspiration in arid and semi-arid regions of Northern China. J Hydrol. 2020;588:125087. doi:10.1016/J.JHYDROL.2020.125087