(2cf) An Epitrochoidal Rotary Reactor for Solar Hydrogen Production Via Ceria Redox Cycle
AIChE Annual Meeting
2022
2022 Annual Meeting
Meet the Candidates Poster Sessions
Meet the Faculty and Post-Doc Candidates Poster Session
Sunday, November 13, 2022 - 1:00pm to 3:00pm
The reactor consists of an eccentric shaft, a rotor in the shape of a regular polygonal prism with curved side surfaces, and a case in the shape of the outer conjugate profile of the rotor. The rotor, meshed with the eccentric shaft through a cam, performs an epitrochoidal movement. The apexes of the rotor are in constant and dynamic contact with the housing, dividing the cavity into multiple reaction chambers. Due to the epitrochoidal movement of the rotor, gases in the reaction chambers are periodically compressed and expanded. Ceria in the form of reticulate porous ceramic is mounted on the curved side surfaces of the rotor. During the rotation, the ceria is not in contact with the housing. Inert gas enters a reaction chamber at the oxidation temperature. As the rotor rotates, the isentropic compression of the inert gas raises the temperature of both the ceria and the gas to the reduction temperature. After the irradiated ceria is isothermally reduced, the inert gas and oxygen generated are expanded, allowing for the recovery of the sensible heat in the form of mechanical energy and reducing the temperature of ceria and the gases to around the oxidation temperature.
This study explores the kinematic synthesis of the epitrochoidal solar reactor, which is based on the planetary motion of a regular polygonal prism with curved side surfaces. A detailed thermodynamic analysis is performed to elucidate the effects of the key geometrical parameters on the solar-to-fuel efficiency of the reactor.
Research Interests
Solar thermal technology; solar thermochemistry; energy storage; synthetic fuel production.
Teaching Interests
Thermodynamics; heat transfer; fluid mechanics.