(432g) Break the Trade-Off Relationship between Detection and Diagnosis Performance through Explainable Deep Learning
AIChE Annual Meeting
2022
2022 Annual Meeting
Computing and Systems Technology Division
Advances in Machine Learning and Intelligent Systems I
Wednesday, November 16, 2022 - 9:54am to 10:13am
Reference.
[1] S.J. Qin, L.H. Chiang, Advances and opportunities in machine learning for process data analytics, Comput. Chem. Eng. 126 (2019) 465â473.
[2] A. Makhzani, J. Shlens, N. Jaitly, I. Goodfellow, B. Frey, Adversarial Autoencoders, ArXiv:1511.05644. (2015). http://arxiv.org/abs/1511.05644.
[3] S.M. Lundberg, S.-I. Lee, A Unified Approach to Interpreting Model Predictions, 31st Conf. Neural Inf. Process. Syst. (NIPS 2017). (2017) 552â564. https://doi.org/10.1016/j.ophtha.2018.11.016.
[4] H.H. Yue, S.J. Qin, Reconstruction-based fault identification using a combined index, Ind. Eng. Chem. Res. 40 (2001) 4403â4414.
[5] K.E.S. Pilario, Y. Cao, Canonical variate dissimilarity analysis for process incipient fault detection, IEEE Trans. Ind. Informatics. 14 (2018) 5308â5315.
[6] J.J. Downs, E.F. Vogel, A Plant-wide Industrial Problem Process, Comput. Chem. Eng. 17 (1993) 245â255. https://doi.org/10.1016/0098-1354(93)80018-I.
[7] M.E. Tipping, C.M. Bishop, Probabilistic principal component analysis, J. R. Stat. Soc. Ser. B Stat. Methodol. 61 (1999) 611â622. https://doi.org/10.1111/1467-9868.00196.
[8] A.J. Holden, D.J. Robbins, W.J. Stewart, D.R. Smith, S. Schultz, M. Wegener, S. Linden, C. Hormann, C. Enkrich, C.M. Soukoulis, D. Schurig, A.J. Taylor, C. Highstrete, M. Lee, R.D. Averitt, P. Markos, D. Mcpeake, S.A. Ramakrishna, J.B. Pendry, V.M. Shalaev, M. Maksimchuk, D. Umstadter, W. Chen, Y.R. Shen, J. V Moloney, Reducing the Dimensionality of Data with Neural Networks, Science (80-. ). 313 (2006) 504â507.
[9] D.P. Kingma, M. Welling, Auto-Encoding Variational Bayes, ArXiv:1312.6114. (2013). http://arxiv.org/abs/1312.6114.
[10] B. Mnassri, M. Ouladsine, Reconstruction-based contribution approaches for improved fault diagnosis using principal component analysis, J. Process Control. 33 (2015) 60â76.