(552j) Investigation on Competition at Confined Interfaces: The Interplay between Polymers and Ions for a Binding Site.
AIChE Annual Meeting
2022
2022 Annual Meeting
Engineering Sciences and Fundamentals
Solid-Liquid Interfaces
Wednesday, November 16, 2022 - 5:45pm to 6:00pm
Exactly this complex competition and molecular structuring at interfaces are central to a multitude of interfacial phenomena, such as membrane transport,[7] membrane conductance, [8,9] cellular adhesion [10] and adhesion regulation in the marine environment. [11]
In our previous work, we characterised a lipid-based model system (LMS) in terms of its stability and bending properties. [12] Here, we further modify its outer face with amine-terminating polymers (varied in density during the experiments) to investigate the specific electrostatic interaction between the amine and a negatively charged mica surface. We utilised a surface forces apparatus (SFA) and an atomic force microscope (AFM) to appreciate the force-distance interaction profile and the sample topography. Moreover, we examine how interaction forces are affected by the electrolyte concentration.[13]
In details, at the mica interface, we observe that cations and polymers begin a nanoscopic competition for the available binding site. We support this observation with experimental data showing the correlation between electrolyte concentration and the measured work of adhesion for LMS on mica. Specifically, we observe a loss in adhesion of 90% when the electrolyte concentration is increased to 1M. Visualisation of super resolved ionic layers onto the mica lattice further confirms the cations presence increasing with concentration. Finally, based on a kinetic model using two competing Langmuir adsorption isotherms we can estimate ion/surface interaction energies from the experimentally recorded interaction force measurements, demonstrating a path for a comprehensive combined experimental and modelling approach.[13]
The authors acknowledge support by the European Research Council (ERC-StG Grant No. 677663). The authors acknowledge the TU Wien Bibliothek for financial support through its Open Access Funding Program.
(1) Israelachvili, J.; Wennerstr Ìom, H. Nature 1996, 379, 219â225.
(2) Stock, P.; Monroe, J. I.; Utzig, T.; Smith, D. J.; Shell, M. S.; Valtiner, M. ACS Nano 2017, 11, 2586â2597.
(3) Shoaib, T.; Yuh, C.; Wimmer, M. A.; Schmid, T. M.; Espinosa-Marzal, R. M. Biomater. Sci. 2020, 8, 3944â3955.
(4) Cai, L.; Sun, Q.; Bao, M.; Ma, H.; Yuan, C.; Xu, W. ACS Nano 2017, 11, PMID: 28383885, 3727â3732.
(5) Kristiansen, K.; Stock, P.; Baimpos, T.; Raman, S.; Harada, J. K.; Israelachvili, J. N.; Valtiner, M. ACS Nano 2014, 8, 10870â10877.
(6) Alvarez-Garcia, D.; Barril, X. Journal of Medicinal Chemistry 2014, 57, PMID:25275946, 8530â8539.
(7) Gage, P. W.; Quastel, D. M. J. The Journal of Physiology 1966, 185, 95â123.
(8) Stieve, H.; Bruns, M. Zeitschrift f Ìur Naturforschung C 1978, 33, 574â579.
(9) Stieve, H.; Pflaum, M.; KlomfaÃ, J.; Gaube, H. Zeitschrift f Ìur Naturforschung C 1985, 40, 278â291.
(10) Ohgaki, M.; Kizuki, T.; Katsura, M.; Yamashita, K. Journal of Biomedical Materials Research 2001, 57, 366â373.
(11) He, X.; Wang, J.; Abdoli, L.; Li, H. Colloids and Surfaces B: Biointerfaces 2016, 146, 289â295.
(12) Bilotto, P.; Lengauer, M.; Andersson, J.; Ramach, U.; Mears, L. L.; Valtiner, M. Langmuir 2019, 35, 15552â15563.
(13) Bilotto, P.; Imre, A. M.; Dworschak, D.; Mears, L. L. E.; Valtiner, M. ACS Physical Chemistry Au 2021, 1, 45-53.