(559e) Low Temperature Solution Processed Synthesis of Chalcogenide Perovskites Using Organometallic Precursors
AIChE Annual Meeting
2022
2022 Annual Meeting
Materials Engineering and Sciences Division
Materials and Devices: From Energy Generation to Efficient Usage (Co-sponsored with Material Interfaces as Energy Solutions)
Wednesday, November 16, 2022 - 4:45pm to 5:00pm
Our synthesis procedure utilizes organometallic barium and zirconium precursors dissolved in a sulfur containing solvent to create a molecular precursor ink. This ink is blade coated onto a glass substrate and annealed in a sulfur containing atmosphere at 575°C for times ranging from 1 hour to 16 hours to produce BaZrS3. The resulting material shows a PXRD diffraction pattern with no obvious secondary phases and a Raman spectrum that matches with previously reported standards. The synthesized BaZrS3 has a photoluminescence peak centered at 1.77 eV with a 0.4 eV FWHM.
In conclusion, we have developed a solution-processed approach to produce BaZrS3 in the distorted perovskite phase and the Ba3Zr2S7 Ruddlesden-Popper phase at 575°C. Continuing work will focus on using this solution-processed approach to synthesize other chalcogenide perovskite materials including CaZrS3, CaHfS3, SrZrS3, SrHfS3, and BaHfS3, and on further characterizing the properties of the synthesized chalcogenide perovskite films.
(1) Wei, X.; Hui, H.; Perera, S.; Sheng, A.; Watson, D. F.; Sun, Y.-Y.; Jia, Q.; Zhang, S.; Zeng, H. Ti-Alloying of BaZrS3 Chalcogenide Perovskite for Photovoltaics. ACS Omega 2020, 5 (30), 18579â18583. https://doi.org/10.1021/acsomega.0c00740.
(2) Meng, W.; Saparov, B.; Hong, F.; Wang, J.; Mitzi, D. B.; Yan, Y. Alloying and Defect Control within Chalcogenide Perovskites for Optimized Photovoltaic Application. Chemistry of Materials 2016, 28 (3), 821â829. https://doi.org/10.1021/acs.chemmater.5b04213.
(3) Sun, Y.-Y.; Agiorgousis, M. L.; Zhang, P.; Zhang, S. Chalcogenide Perovskites for Photovoltaics. Nano Letters 2015, 15 (1), 581â585. https://doi.org/10.1021/nl504046x.
(4) Brehm, J. A.; Bennett, J. W.; Schoenberg, M. R.; Grinberg, I.; Rappe, A. M. The Structural Diversity of AB S 3 Compounds with d 0 Electronic Configuration for the B -Cation. The Journal of Chemical Physics 2014, 140 (22), 224703. https://doi.org/10.1063/1.4879659.
(5) Sopiha, K. v; Comparotto, C.; Márquez, J. A.; Scragg, J. J. S. Chalcogenide Perovskites: Tantalizing Prospects, Challenging Materials. Advanced Optical Materials. December 13, 2021, p 2101704. https://doi.org/10.1002/adom.202101704.
(6) Niu, S.; Huyan, H.; Liu, Y.; Yeung, M.; Ye, K.; Blankemeier, L.; Orvis, T.; Sarkar, D.; Singh, D. J.; Kapadia, R.; Ravichandran, J. Bandgap Control via Structural and Chemical Tuning of Transition Metal Perovskite Chalcogenides. Advanced Materials 2017, 29 (9), 1604733. https://doi.org/10.1002/adma.201604733.