(169ao) Permutationally Invariant Network for Enhanced Sampling (PINES): A General Approach to Treating Identical Particles and Constructing Targeted CVs with Machine Learning
AIChE Annual Meeting
2024
2024 AIChE Annual Meeting
Computational Molecular Science and Engineering Forum
Poster Session: Computational Molecular Science and Engineering Forum
Monday, October 28, 2024 - 3:30pm to 5:00pm
References:
(1) Sidky, H.; Chen, W.; Ferguson, A. L. Machine Learning for Collective Variable Discovery and Enhanced Sampling in Biomolecular Simulation. Molecular Physics 2020, 118 (5), e1737742. https://doi.org/10.1080/00268976.2020.1737742.
(2) Atz, K.; Grisoni, F.; Schneider, G. Geometric Deep Learning on Molecular Representations. arXiv December 31, 2021. http://arxiv.org/abs/2107.12375.
(3) Noé, F.; Tkatchenko, A.; Müller, K.-R.; Clementi, C. Machine Learning for Molecular Simulation. Annual Review of Physical Chemistry 2020, 71 (1), 361â390. https://doi.org/10.1146/annurev-physchem-042018-052331.
(4) Herringer, N. S. M.; Dasetty, S.; Gandhi, D.; Lee, J.; Ferguson, A. L. Permutationally Invariant Networks for Enhanced Sampling (PINES): Discovery of Multi-Molecular and Solvent-Inclusive Collective Variables. arXiv August 16, 2023. https://doi.org/10.48550/arXiv.2308.08680.
(5) Tribello, G. A.; Bonomi, M.; Branduardi, D.; Camilloni, C.; Bussi, G. PLUMED 2: New Feathers for an Old Bird. Computer Physics Communications 2014, 185 (2), 604â613. https://doi.org/10.1016/j.cpc.2013.09.018.
(6) Sidky, H.; Colón, Y. J.; Helfferich, J.; Sikora, B. J.; Bezik, C.; Chu, W.; Giberti, F.; Guo, A. Z.; Jiang, X.; Lequieu, J.; Li, J.; Moller, J.; Quevillon, M. J.; Rahimi, M.; Ramezani-Dakhel, H.; Rathee, V. S.; Reid, D. R.; Sevgen, E.; Thapar, V.; Webb, M. A.; Whitmer, J. K.; de Pablo, J. J. SSAGES: Software Suite for Advanced General Ensemble Simulations. The Journal of Chemical Physics 2018, 148 (4), 044104. https://doi.org/10.1063/1.5008853.