(228h) Assessing the Key Factors in the Transition to a Hydrogen-Based Economy through Agent-Based Simulation
AIChE Annual Meeting
2024
2024 AIChE Annual Meeting
Sustainable Engineering Forum
Design, Analysis, and Optimization of Sustainable Energy Systems and Supply Chains II
Monday, October 28, 2024 - 5:36pm to 5:54pm
The green H2 supply chain (GHSC) comprises a green hydrogen production hub, a logistics and infrastructure distribution network, and the end-users who use either liquid or gaseous H2 as fuel or feedstock. The production hubs are typically established in the vicinity of sources of renewable electricity production. Hence, locations with well-established solar and wind farms serve as potential supply sites. With respect to logistics and distribution infrastructure, constructing dedicated H2 pipeline grids might be capitally intensive, but utilizing the existing NG pipeline network to transport blended H2 in sufficient quantities is found to be both economically and operationally feasible. Additionally, pipeline transportation of gaseous H2 can be supplemented by transport by liquid H2 carriers or compressed tube trailers (especially for shorter distances) via either road or rail. The list of end-users includes energy-intensive industries such as iron and steel, fertilizer, refineries, chemicals, and cement, as well as transport or distribution fuel consumers. Existing literature lacks quantitative approaches that can help identify the key factors (such as economics, logistics, or regulatory factors) that will influence the transition. We seek to address this gap in our work.
We consider a market-based economy governed by laws of supply and demand. We assume that all the entities in the GHSC are rational and seek to maximize their economic profit. Hence, the decision of an end-user to switch to H2 would be a consequence of either regulatory action (environmental regulations) or an economic choice depending on the competitiveness of utilizing H2. Further, estimating the demand for H2 would necessitate estimating its landed price for each end-user. Transport of H2 through pipelines is economically viable only for transport in large quantities. Similarly, road and rail-based transport have higher unit costs of delivery but are economically attractive for shorter distances. This unique interplay between demand, the economics of supply, and distribution makes planning the GHSC a challenging problem. We, therefore, propose an agent-based simulation optimization model in this work.
The proposed methodology comprises a Demand Estimation Model that is developed using an agent-based modeling framework to assess the spatially distributed demand for H2. Here, each entity in the supply chain is modeled separately as an agent. Green H2 supplier agents (production hubs) and end-user agents are distributed spatially and modeled as rational, self-interested decision-makers that seek to maximize their own objectives subject to government regulations. Each end-user agent may wish to switch to H2 at a future time, subject to availability, affordability, and regulations. The switch to H2 further creates opportunities for rail/road transport operator agents to enable transport of the necessary quantity from the supplier to the end-user. With established GIS routing maps and tools that can be utilized to model road/rail-based transport of H2 to end-users, we have considered both the aforementioned transportation modes as the H2 distribution infrastructure in the logistic segment of the supply chain, while transportation through pipelines will be addressed as part of future avenues of research.
The agent-based demand estimation model has been implemented using AnyLogic modeling and simulation platform. In this paper, we present the application of the developed framework to a case study focusing on the green H2 demand potential for a period from 2020 to 2040 in Tamil Nadu, a state in India. The model comprises ~60 spatially distributed end-users and two potential production hubs. Different scenarios involving H2 economics (based on predicted prices), carbon taxations, and environmental regulations have been considered, and the Spatio-temporal H2 demands arising from end-users decisions over the 20 years horizon are estimated. In this paper, we will report a spectrum of insights relating to the key role played by H2 prices, national-level environmental regulations, and carbon taxations in influencing the transition to a hydrogen-based economy.Additionally, our results reveal granular details on the extent of fossil fuels that can be displaced by hydrogen and the preferred transportation modes categorized by various industrial end-use sectors.
References
- Mac Dowell, N. et al. The hydrogen economy: A pragmatic path forward. Joule 5, 2524â2529 (2021).
- Green Hydrogen for Industry: A Guide to Policy Making. /publications/2022/Mar/Green-Hydrogen-for-Industry https://irena.org/publications/2022/Mar/Green-Hydrogen-for-Industry.
- International Energy Agency. Global Hydrogen Review 2021. (OECD, 2021). doi:10.1787/39351842-en.
- Hydrogen Insights 2021 - Hydrogen Council. https://hydrogencouncil.com/en/ https://hydrogencouncil.com/en/hydrogen-insights-2021/.