(264c) Quantifying the Impact of Acute Estrogen Exposure on Platelet Central Carbon Metabolism | AIChE

(264c) Quantifying the Impact of Acute Estrogen Exposure on Platelet Central Carbon Metabolism

Authors 

Neeves, K. B., University of Colorado Denver - Anschutz Medical Campus
Boyle, N., Colorado School of Mines
Platelets are small (~2 micron), disc-shaped, anuclear blood cells involved in clotting. Chemical or mechanical stimuli such as a broken blood vessel triggers platelet activation, which allows platelets to increase their surface area, attach to other blood cells, and catalyze the formation of an insoluble clot1. While they are essential for wound repair and to stop excess bleeding, platelets are also implicated in venous thromboembolism (VTE)2-5. VTE can block blood flow and potentially cause a life-threatening pulmonary embolism. Pre-menopausal women have a lower incidence of VTE as compared to men and post-menopausal women6. However, people taking exogenous estrogen (such as for birth control or hormone replacement therapy) are at an estimated 4-fold increased risk of VTE; a risk that is highest during the first three months of treatment7. Despite the fact that estrogen containing medications have been available since the 1960’s, there is an incomplete understanding of how exogenous estrogen imparts this increased clotting risk. Platelets are of are interest because they contain estrogen receptors and are the primary cells involved in clotting8. It has been established that platelet activation and metabolism are tightly linked9-17. Previous studies of platelet metabolism have utilized indirect measurements, such as oxygen consumption and extracellular acidification, as a semi-quantitative way to measure relative activities of respiration and glycolysis, respectively11, 18. However, this method is subject to forms of error including buffering capacity of the media and acidification from CO2 produced by respiration. We have previously used isotope assisted metabolic flux analysis (13C-MFA) to study platelet metabolism, but while detailed, this is low throughput14. In this study, we quantify the impact of acute estrogen exposure on resting and activated platelet metabolism by directly measuring major inputs and outputs of metabolism, as well as estrogen’s effect on markers of reversible and irreversible platelet activation. This allows us to quantify metabolic changes in a way that is higher throughput than 13C-MFA but more precise than Seahorse.















(1) Versteeg, H. H.; Heemskerk, J. W.; Levi, M.; Reitsma, P. H. New fundamentals in hemostasis. Physiol Rev 2013, 93 (1), 327-358. DOI: 10.1152/physrev.00016.2011 From NLM Medline.

(2) Puurunen, M. K.; Hwang, S. J.; O'Donnell, C. J.; Tofler, G.; Johnson, A. D. Platelet function as a risk factor for venous thromboembolism in the Framingham Heart Study. Thromb Res 2017, 151, 57-62. DOI: 10.1016/j.thromres.2017.01.010 From NLM Medline.

(3) Montoro-Garcia, S.; Schindewolf, M.; Stanford, S.; Larsen, O. H.; Thiele, T. The Role of Platelets in Venous Thromboembolism. Semin Thromb Hemost 2016, 42 (3), 242-251. DOI: 10.1055/s-0035-1570079 From NLM Medline.

(4) Koupenova, M.; Kehrel, B. E.; Corkrey, H. A.; Freedman, J. E. Thrombosis and platelets: an update. Eur Heart J 2017, 38 (11), 785-791. DOI: 10.1093/eurheartj/ehw550 From NLM Medline.

(5) Brill, A.; Fuchs, T. A.; Chauhan, A. K.; Yang, J. J.; De Meyer, S. F.; Kollnberger, M.; Wakefield, T. W.; Lammle, B.; Massberg, S.; Wagner, D. D. von Willebrand factor-mediated platelet adhesion is critical for deep vein thrombosis in mouse models. Blood 2011, 117 (4), 1400-1407. DOI: 10.1182/blood-2010-05-287623 From NLM Medline.

(6) Holmegard, H. N.; Nordestgaard, B. G.; Schnohr, P.; Tybjaerg-Hansen, A.; Benn, M. Endogenous sex hormones and risk of venous thromboembolism in women and men. J Thromb Haemost 2014, 12 (3), 297-305. DOI: 10.1111/jth.12484 From NLM Medline.

(7) van Hylckama Vlieg, A.; Helmerhorst, F. M.; Vandenbroucke, J. P.; Doggen, C. J.; Rosendaal, F. R. The venous thrombotic risk of oral contraceptives, effects of oestrogen dose and progestogen type: results of the MEGA case-control study. BMJ 2009, 339, b2921. DOI: 10.1136/bmj.b2921 From NLM Medline.

(8) Khetawat, G.; Faraday, N.; Nealen, M. L.; Vijayan, K. V.; Bolton, E.; Noga, S. J.; Bray, P. F. Human megakaryocytes and platelets contain the estrogen receptor β and androgen receptor (AR): testosterone regulates AR expression. Blood 2000, 95 (7), 2289-2296. DOI: 10.1182/blood.V95.7.2289.

(9) Kulkarni, P. P.; Tiwari, A.; Singh, N.; Gautam, D.; Sonkar, V. K.; Agarwal, V.; Dash, D. Aerobic glycolysis fuels platelet activation: small-molecule modulators of platelet metabolism as anti-thrombotic agents. Haematologica 2019, 104 (4), 806-818. DOI: 10.3324/haematol.2018.205724 From NLM Medline.

(10) Fidler, T. P.; Campbell, R. A.; Funari, T.; Dunne, N.; Balderas Angeles, E.; Middleton, E. A.; Chaudhuri, D.; Weyrich, A. S.; Abel, E. D. Deletion of GLUT1 and GLUT3 Reveals Multiple Roles for Glucose Metabolism in Platelet and Megakaryocyte Function. Cell Rep 2017, 20 (4), 881-894. DOI: 10.1016/j.celrep.2017.06.083 From NLM Medline.

(11) Aibibula, M.; Naseem, K. M.; Sturmey, R. G. Glucose metabolism and metabolic flexibility in blood platelets. J Thromb Haemost 2018, 16 (11), 2300-2314. DOI: 10.1111/jth.14274 From NLM Medline.

(12) Fidler, T. P.; Marti, A.; Gerth, K.; Middleton, E. A.; Campbell, R. A.; Rondina, M. T.; Weyrich, A. S.; Abel, E. D. Glucose Metabolism Is Required for Platelet Hyperactivation in a Murine Model of Type 1 Diabetes. Diabetes 2019, 68 (5), 932-938. DOI: 10.2337/db18-0981 From NLM Medline.

(13) Ferreira, I. A.; Mocking, A. I.; Urbanus, R. T.; Varlack, S.; Wnuk, M.; Akkerman, J. W. Glucose uptake via glucose transporter 3 by human platelets is regulated by protein kinase B. J Biol Chem 2005, 280 (38), 32625-32633. DOI: 10.1074/jbc.M507221200 From NLM Medline.

(14) Sake, C. L.; Metcalf, A. J.; Meagher, M.; Di Paola, J.; Neeves, K. B.; Boyle, N. R. Isotopically nonstationary (13)C metabolic flux analysis in resting and activated human platelets. Metab Eng 2022, 69, 313-322. DOI: 10.1016/j.ymben.2021.12.007 From NLM Medline.

(15) Nayak, M. K.; Ghatge, M.; Flora, G. D.; Dhanesha, N.; Jain, M.; Markan, K. R.; Potthoff, M. J.; Lentz, S. R.; Chauhan, A. K. The metabolic enzyme pyruvate kinase M2 regulates platelet function and arterial thrombosis. Blood 2021, 137 (12), 1658-1668. DOI: 10.1182/blood.2020007140 From NLM Medline.

(16) Ravera, S.; Signorello, M. G.; Panfoli, I. Platelet Metabolic Flexibility: A Matter of Substrate and Location. Cells 2023, 12 (13). DOI: 10.3390/cells12131802 From NLM Medline.

(17) Ghatge, M.; Flora, G. D.; Nayak, M. K.; Chauhan, A. K. Platelet Metabolic Profiling Reveals Glycolytic and 1-Carbon Metabolites Are Essential for GP VI-Stimulated Human Platelets-Brief Report. Arterioscler Thromb Vasc Biol 2024, 44 (2), 409-416. DOI: 10.1161/ATVBAHA.123.319821 From NLM Medline.

(18) Lepropre, S.; Kautbally, S.; Octave, M.; Ginion, A.; Onselaer, M.-B.; Steinberg, G. R.; Kemp, B. E.; Hego, A.; Wra, O.; Brouns, S.; et al. AMPK-ACC signaling modulates platelet phospholipids and potentiates thrombus formation. Blood 2018, 132.

Not sure if poopooing on seahorse like this is necessary in an abstract