(615i) Quantitative Simulations of Siloxane Adsorption in Metal–Organic Frameworks
AIChE Annual Meeting
2024
2024 AIChE Annual Meeting
Separations Division
Molecular Simulations for Designing Adsorbents and Adsorption Processes
Wednesday, October 30, 2024 - 5:15pm to 5:30pm
We present a transferable force field (FF) for simulating the bulk properties of linear and cyclic siloxanes and the adsorption of these species in metalâorganic frameworks (MOFs). Unlike previous FFs for siloxanes, our FF accurately reproduces the vaporâliquid equilibria of each species in the bulk phase. The quality of our FF combined with the Universal Force Field using standard LorentzâBerthelot combining rules for MOF atoms was assessed in a wide range of MOFs without open metal sites, showing good agreement with dispersion-corrected density functional theory calculations. Predictions with this FF show good agreement with the limited experimental data for siloxane adsorption in MOFs that is available. As an example of using the FF to predict adsorption properties in MOFs, we present simulations examining entropy effects in binary linear and cyclic siloxane mixture co-adsorption in the large-pore MOF with structure code FOTNIN.
Chng, J. Y.; Sholl, D. S. Quantitative Simulations of Siloxane Adsorption in MetalâOrganic Frameworks. ACS Applied Materials & Interfaces 2023, 15, 37828â37836.