(738b) Towards Understanding the Role of Transport in Electrocatalysis: the Role of Dimensionless Analysis and Multi-Scale Modeling
AIChE Annual Meeting
2024
2024 AIChE Annual Meeting
Liaison Functions
AIChE Journal Futures: New Directions in Chemical Engineering Research (Invited Talks)
Tuesday, October 29, 2024 - 3:50pm to 4:10pm
In this talk, the development of a multi-scale first-principles reaction-transport model is presented for the electrochemical reduction of CO2 to fuels and chemicals on polycrystalline copper electrodes. The model utilizes a continuous stirred-tank reactor (CSTR)-volume approximation that captures the relative timescales for mesoscale stochastic processes at the electrode/electrolyte interface that determine product selectivity. The model is built starting from a large experimental dataset obtained under a broad range of well-defined transport regimes in a gastight rotating cylinder electrode cell. Product distributions under different conditions of transport, applied potential, bulk electrolyte concentration, and catalyst porosity are rationalized by introducing dimensionless numbers that reduce complexity and capture relative timescales for mesoscopic and microscopic dynamics of electrocatalytic reactions on copper electrodes of any porosity. This work demonstrates that one CO2 reduction mechanism can explain differences in selectivity reported for copper-based electrocatalysts when mass transport, concentration polarization effects, and primary and secondary current distributions are taken into account. The reaction-transport model presented here should enable the rational design of CO2 electrolyzers.