(57l) Machine Learning Based Quantitative Structure-Property Relationship Prediction of Lower Flammability Limit
AIChE Spring Meeting and Global Congress on Process Safety
2020
2020 Virtual Spring Meeting and 16th GCPS
Global Congress on Process Safety
GCPS Poster Session
Wednesday, August 19, 2020 - 3:00pm to 4:00pm
This study used lower flammability limit (LFL) data and ten calculated molecular descriptors data of 78 pure chemical compounds to construct Quantitative structure-property relationship (QSPR) models. Four machine learning methods, k-nearest neighbors (k-NN), support vector machine (SVM), random forest (RF) and boosting, are applied to QSPR models to improve prediction accuracy. Prediction errors and accuracy are compared with traditional multiple linear regression (MLR) models. A novel cross validation method, 10-fold cross validation method, is also used to increase the data usage and prediction reliability. Result shows that models generated by machine learning methods have a significantly lower root mean square error (RMSE) than traditional MLR method in the test dataset. Machine learning based models can be used as substitution methods to improve UFLs predictability of chemical compounds
Checkout
This paper has an Extended Abstract file available; you must purchase the conference proceedings to access it.
Do you already own this?
Log In for instructions on accessing this content.
Pricing
Individuals
AIChE Pro Members | $150.00 |
Employees of CCPS Member Companies | $150.00 |
AIChE Graduate Student Members | Free |
AIChE Undergraduate Student Members | Free |
AIChE Explorer Members | $225.00 |
Non-Members | $225.00 |