(5f) Radioisotope Techniques for Process Investigations
AIChE Spring Meeting and Global Congress on Process Safety
2020
2020 Virtual Spring Meeting and 16th GCPS
Separations Division - See Also Distillation Symposium
Separations Process Fundamentals II
Tuesday, August 18, 2020 - 2:10pm to 2:30pm
our processes. During the design phase, decisions were made between knowing more about the process,
which means buying more instruments, and saving capital funds. When a problem appears with the
operation of a vessel, there are always gaps in the knowledge of what is happening due to a lack of
instruments in the places where knowledge is not routinely required. Process engineers and operations
personnel need to know what is happening so they can take corrective action. When knowledge is
missing, they often take actions that make matters worse.
For distillation and separation processes Chemical Engineers have historically relied upon plant process
measurements such as flow rates, temperatures, and pressures and model or simulation results for data
with which to solve troubleshooting or re-design problems. An array of on-line diagnostic services are
available that can provide additional data offering real-time information on how pieces of process
equipment are actually operating. The most common application is Gamma Scanning. This test is
primarily applied, but not necessarily limited to, distillation or separation columns. Gamma scans
provide a density profile of the internal process of operating distillation columns and other process
vessels. The density profile can be used to diagnose the hydraulic operating conditions of mass transfer
devices such as damage to internals, flooding, degree of entrainment or weeping, liquid levels on trays
and distributors, liquid distribution through packed beds, etc. The presenter will show case studies
where scanning revealed vital process information that helped solve an operating problem, or helped
make a revamp/re-design successful. Additional derivatives from gamma scanning of detecting flow
distribution patterns will be demonstrated. The ThruVision Scan technique is a specialized horizontal
gamma scan used to generate a topographic profile of the internal cross-sectional density of process
equipment. This profile is useful for the detailed study of liquid flow distribution through packed
columns as well as having applications beyond distillation columns. A hybrid application involving tracers
and scanning on fixed bed catalytic reactors will also be discussed.