(182b) Progress Towards a Comprehensive Model for Mass Transfer and Hydraulics for Structured Packings in Carbon Capture Service
AIChE Spring Meeting and Global Congress on Process Safety
2022
2022 Spring Meeting and 18th Global Congress on Process Safety Proceedings
Topical 6: 22nd Topical Conference on Gas Utilization
Techno-Economic and Environmental Aspects
Wednesday, April 13, 2022 - 1:52pm to 2:14pm
ShV = 0.333 ReV1 ScV1 [cos(θ)/cos(Ï/4)]0.552
ShL = 0.1666ReL0.8 ScL0.758 [cos(θ)/cos(Ï/4)]0.747
am/ad = 0.8093 ReV-0.0293 WeL0.175 FrL-0.1208
ShV = (kyde/(cVDV))
ShL = (kxde/(cLDL))
de = 4ε/ad
The table below compares HETP predictions from the correlation above and from other popular mass transfer correlations in the open literature (Bravo, et al., 1985; Hanley and Chen, 2014; Wang, et al., 2016) with some of the experimental data we have collected. We find that the correlation of this work predicts the experimental HETP dataset with an average difference of 9.4% and a maximum difference of 50%; the next best correlation - that of Wang, et al. - predicts these same data with an average difference of 20% and a maximum difference of 172%.
|
|
Pressure |
Packing |
Fs |
HETP |
This Work |
Hanley & Chen |
Wang, et al. |
BRF85 |
|
Light Key |
Heavy Key |
Pa |
|
Pa1/2 |
m |
m |
m |
m |
m |
|
P-XYLENE |
O-XYLENE |
2000.0 |
Mellapak 250Y |
0.8478 |
0.3615 |
0.4016 |
0.4318 |
0.4002 |
0.2549 |
|
P-XYLENE |
O-XYLENE |
13000.0 |
Mellapak 250Y |
0.2332 |
0.3493 |
0.3587 |
0.3306 |
0.2851 |
0.2154 |
|
P-XYLENE |
O-XYLENE |
100000.0 |
Mellapak 250Y |
0.2817 |
0.3221 |
0.3195 |
0.2677 |
0.2463 |
0.2303 |
|
IC4 |
NC4 |
690000.0 |
Mellapak 250Y |
1.1402 |
0.2868 |
0.3061 |
0.2346 |
0.3007 |
0.3002 |
|
IC4 |
NC4 |
1140000.0 |
Mellapak 250Y |
0.7191 |
0.2778 |
0.2773 |
0.2112 |
0.2525 |
0.2131 |
|
CYCLOC6 |
NC7 |
33000.0 |
Mellapak 250Y |
3.1962 |
0.4111 |
0.4080 |
0.4068 |
0.4906 |
0.5029 |
|
CHLORBZ |
ETHBZ |
96000.0 |
Mellapak 250Y |
1.5976 |
0.3548 |
0.3387 |
0.2698 |
0.3305 |
0.3636 |
|
CHLORBZ |
ETHBZ |
96000.0 |
Mellapak 350Y |
2.0988 |
0.2631 |
0.2571 |
0.2204 |
0.2335 |
0.2671 |
|
CHLORBZ |
ETHBZ |
5000.0 |
Mellapak 500Y |
1.0143 |
0.2195 |
0.2141 |
0.2443 |
0.1694 |
0.1196 |
|
2ME2BUTL |
ISOBUTL |
20000.0 |
Mellapak 500Y |
1.2422 |
0.2805 |
0.2364 |
0.4578 |
0.2673 |
0.1584 |
|
2ME2BUTL |
ISOBUTL |
10000.0 |
Mellapak 500Y |
1.1324 |
0.2694 |
0.2502 |
0.6447 |
0.3234 |
0.1488 |
|
2ME2BUTL |
ISOBUTL |
2000.0 |
Mellapak 500Y |
1.6408 |
0.3365 |
0.2934 |
1.6509 |
0.5715 |
0.1538 |
|
CHLORBZ |
ETHBZ |
2000.0 |
Mellapak 500X |
1.3943 |
0.2846 |
0.2811 |
0.7395 |
0.2240 |
0.1389 |
|
CHLORBZ |
ETHBZ |
10000.0 |
Mellapak 500X |
1.3977 |
0.2780 |
0.2630 |
0.4882 |
0.1957 |
0.1578 |
|
CHLORBZ |
ETHBZ |
20000.0 |
Mellapak 500X |
0.6351 |
0.2670 |
0.2490 |
0.4033 |
0.1654 |
0.1365 |
|
CHLORBZ |
ETHBZ |
95000.0 |
Mellapak 500X |
1.9088 |
0.2434 |
0.2353 |
0.2651 |
0.1741 |
0.1931 |
|
2ME2BUTL |
ISOBUTL |
10000.0 |
Mellapak 500X |
1.7589 |
0.3269 |
0.3225 |
2.2484 |
0.3967 |
0.1927 |
|
2ME2BUTL |
ISOBUTL |
20000.0 |
Mellapak 500X |
1.3913 |
0.3035 |
0.2999 |
1.4575 |
0.3175 |
0.1865 |
|
2ME2BUTL |
ISOBUTL |
95000.0 |
Mellapak 500X |
1.4372 |
0.2582 |
0.2609 |
0.5831 |
0.2208 |
0.1991 |
|
CHLORBZ |
ETHBZ |
10265.8 |
Mellapak 250Y |
1.4602 |
0.3889 |
0.3810 |
0.3434 |
0.3772 |
0.3189 |
|
CHLORBZ |
ETHBZ |
10265.8 |
Mellapak 250Y |
2.4386 |
0.3975 |
0.3883 |
0.3448 |
0.4072 |
0.3638 |
|
CHLORBZ |
ETHBZ |
10265.8 |
Mellapak 252Y |
3.0246 |
0.4071 |
0.3918 |
0.3454 |
0.4208 |
0.3852 |
|
P-XYLENE |
O-XYLENE |
13332.2 |
Mellapak 252Y |
2.9485 |
0.3553 |
0.3861 |
0.3363 |
0.4136 |
0.4035 |
|
CYCLOC6 |
NC7 |
165474.2 |
Mellapak 252Y |
1.4631 |
0.3387 |
0.3479 |
0.3027 |
0.3624 |
0.3981 |
|
CYCLOC6 |
NC7 |
101325.0 |
Mellapak 752Y |
1.7872 |
0.2271 |
0.2028 |
0.2164 |
0.1769 |
0.1943 |
|
ISOC8 |
TOLUENE |
13332.2 |
ISP IT |
1.4225 |
0.3105 |
0.3282 |
0.3567 |
0.3517 |
||
ISOC8 |
TOLUENE |
13332.2 |
ISP 4T |
1.3958 |
0.5555 |
0.6257 |
0.5648 |
0.8315 |
||
ARGON |
OXYGEN |
206842.7 |
Flexipac 500Y |
0.9095 |
0.1811 |
0.1784 |
0.1586 |
0.1523 |
0.1533 |
|
P-XYLENE |
O-XYLENE |
5332.9 |
Flexipac 1.4X |
2.5618 |
0.3454 |
0.3787 |
0.7143 |
0.3428 |
0.2802 |
|
P-XYLENE |
O-XYLENE |
26664.5 |
Flexipac 1.4X |
2.2568 |
0.3493 |
0.3490 |
0.4606 |
0.3011 |
0.3037 |
|
P-XYLENE |
O-XYLENE |
159986.8 |
Flexipac 1.4X |
1.5127 |
0.3150 |
0.3068 |
0.2799 |
0.2503 |
0.2824 |
|
P-XYLENE |
O-XYLENE |
439963.8 |
Flexipac 1.4X |
1.4517 |
0.2731 |
0.2801 |
0.2105 |
0.2294 |
0.2549 |
|
P-XYLENE |
O-XYLENE |
5332.9 |
Flexipac 1.6X |
1.2931 |
0.3531 |
0.4332 |
0.7964 |
0.3858 |
||
P-XYLENE |
O-XYLENE |
26664.5 |
Flexipac 1.6X |
1.6225 |
0.3835 |
0.4043 |
0.5150 |
0.3551 |
||
P-XYLENE |
O-XYLENE |
159986.8 |
Flexipac 1.6X |
1.1101 |
0.3581 |
0.3559 |
0.3131 |
0.2956 |
||
P-XYLENE |
O-XYLENE |
439963.8 |
Flexipac 1.6X |
1.0491 |
0.3302 |
0.3247 |
0.2354 |
0.2699 |
||
In addition, we have used this new correlation to model the performance of several carbon capture pilot plant experiments reported in the literature (Gabrielson 2007 ; Notz et al., 2012) . Those results, along with results for the Bravo, Rocha Fair correlation of 1985 (Bravo, et al., 1985), the 2014 correlation of Hanley and Chen, and the 2016 correlation of Wang, et al., are summarized below. Again, the correlation of this work outperforms the other correlations examined.
Gabrielson Data
Run 1 | |||||
Experimental | This work | Wang | Hanley/Chen | BRF 85 | |
Gas CO2 conc. Bottom (%vol) | 2.62 | 2.62 | 2.62 | 2.62 | 2.62 |
Gas CO2 conc. Top (%vol) | 1.69 | 1.645 | 1.602 | 1.089 | 1.278 |
Liquid CO2 loading top | 0.072 | 0.07201 | 0.7201 | 0.07201 | 0.07201 |
Liquid CO2 loading bottom | 0.178 | 0.183 | 0.1878 | 0.2451 | 0.224 |
Run 3 | |||||
Experimental | This work | Wang | Hanley/Chen | BRF 85 | |
Gas CO2 conc. Bottom (%vol) | 4.17 | 4.17 | 4.17 | 4.17 | 4.17 |
Gas CO2 conc. Top (%vol) | 2.36 | 2.173 | 2.095 | 1.514 | 1.64 |
Liquid CO2 loading top | 0.084 | 0.084 | 0.084 | 0.084 | 0.084 |
Liquid CO2 loading bottom | 0.169 | 0.1789 | 0.1825 | 0.2093 | 0.2035 |
Run 6 | |||||
Experimental | This work | Wang | Hanley/Chen | BRF 85 | |
Gas CO2 conc. Bottom (%vol) | 4.58 | 4.58 | 4.58 | 4.58 | 4.58 |
Gas CO2 conc. Top (%vol) | 2.9 | 2.883 | 2.785 | 2.142 | 2.337 |
Liquid CO2 loading top | 0.147 | 0.147 | 0.147 | 0.147 | 0.147 |
Liquid CO2 loading bottom | 0.226 | 0.2272 | 0.2318 | 0.2611 | 0.2523 |
Run 11 | |||||
Experimental | This work | Wang | Hanley/Chen | BRF 85 | |
Gas CO2 conc. Bottom (%vol) | 10.27 | 10.27 | 10.27 | 10.27 | 10.27 |
Gas CO2 conc. Top (%vol) | 8.01 | 8.048 | 7.797 | 6.474 | 7.108 |
Liquid CO2 loading top | 0.284 | 0.284 | 0.284 | 0.284 | 0.284 |
Liquid CO2 loading bottom | 0.4 | 0.3945 | 0.4057 | 0.4663 | 0.438 |
Notz, et al., Experiment 2 Data
Experimental | BRF85 | Hanley/Chen | Wang | This work | |
GASOUT mflow (kg/hr) | 65.6 | 66.3391 | 66.3941 | 66.6300 | 66.6127 |
GASOUT mfrac CO2 | 0.088 | 0.0750 | 0.0757 | 0.0795 | 0.0816 |
LEANIN mflow (kg/hr) | 200 | 198.3004 | 198.3799 | 197.6807 | 197.6336 |
LEANIN molefrac (nCO2/nMEA) | 0.308 | 0.2988 | 0.3022 | 0.2926 | 0.2899 |
RICHOUT mflow (kg/hr) | 207.4 | 205.8422 | 205.9266 | 205.2253 | 205.1806 |
RICHOUT molefrac (nCO2/nMEA) | 0.464 | 0.4692 | 0.4712 | 0.4553 | 0.4490 |
CO2OUT mflow (kg/hr) | 6.14 | 7.0062 | 6.9543 | 6.6847 | 6.5384 |
CO2OUT mfrac CO2 | 0.996 | 0.9945 | 0.9945 | 0.9945 | 0.9945 |
WATERMU mflow (kg/hr) | 1.21 | 1.4846 | 1.5416 | 1.7765 | 1.7660 |
RICHOUT HeatX duty (kW) | 12.4036 | 11.9129 | 11.8712 | 11.9612 | 11.9935 |
LEANIN H2O (w/w) | 0.653 | 0.6519 | 0.6514 | 0.6524 | 0.6526 |
LEANIN MEA (w/w) | 0.284 | 0.2864 | 0.2863 | 0.2871 | 0.2873 |
LEANIN CO2 (w/w) | 0.063 | 0.0617 | 0.0623 | 0.0605 | 0.0600 |
Future work will attempt to incorporate improved column hydraulic and pressure drop predictions to supplement the mass transfer correlation reported in this talk.
REFERENCES
Agrawal R, Woodward DW, Ludwig KA, Bennett DL. Impact of low pressure drop structure packing on air distillation. Paper presented at Distillation and Absorption: IChemE Symposium Series 128. Maastricht, The Netherlands, 1992.
Bravo JL, Rocha JA, Fair JR. Mass transfer in gauze packings. Hydrocarbon Process. 1985;64:91.
Chao Wang, Di Song, Frank A. Seibert, and Gary T. Rochelle. Dimensionless Models for Predicting the Effective Area, Liquid-Film, and Gas-Film Mass-Transfer Coefficients of Packing. Industrial & Engineering Chemistry Research. 2016 55 (18), 5373-5384
Fitz CW, Kunesh JG, Shariat A. Performance of structured packing in a commercial-scale column at pressures of 0.02â27.6 bar. Ind Eng Chem Res. 1999;38:512â518.
Gabrielsen J. CO2 capture from coal fired power plants. PhD Thesis, Technical University of Denmark, 2007.
Gualito JJ, Cerino FJ, Cardenas JC, Rocha JA. Design method for distillation columns filled with metallic, ceramic, or plastic structured packings. Ind Eng Chem Res. 1997;36:1747â1757.
Hanley B, Chen C-C. Letter to the Editor. AIChE J. 2012;58:132â152.
Notz, R., Mangalapally, H.P., Hoch, S., Hasse, H., 2011. Post combustion CO2 capture by reactive absorption: Pilot plant description and results of systematic studies with MEA. International Journal of Greenhouse Gas Control 6 (2012), 84-122.
Tsai, Robert E. Mass Transfer Area of Structured Packing. Ph.D. Dissertation. 2010.
Checkout
This paper has an Extended Abstract file available; you must purchase the conference proceedings to access it.
Do you already own this?
Log In for instructions on accessing this content.
Pricing
Individuals
AIChE Pro Members | $150.00 |
AIChE Emeritus Members | $105.00 |
Employees of CCPS Member Companies | $150.00 |
AIChE Graduate Student Members | Free |
AIChE Undergraduate Student Members | Free |
AIChE Explorer Members | $225.00 |
Non-Members | $225.00 |