(182b) Progress Towards a Comprehensive Model for Mass Transfer and Hydraulics for Structured Packings in Carbon Capture Service | AIChE

(182b) Progress Towards a Comprehensive Model for Mass Transfer and Hydraulics for Structured Packings in Carbon Capture Service

Authors 

Wilfert, J. - Presenter, Louisiana State University
Hanley, B., University of the West Indies
Rate-based calculations theoretically offer more rigor and reliability for assessing column performance than the traditional equilibrium-stage approach. Unfortunately the rate-based method is ultimately tied to equipment performance correlations with limited predictive capability. We have undertaken an effort to develop significantly improved correlating expressions for mass transfer in columns containing sheet metal structured packings. To accomplish this, we have collected and simultaneously analyzed HETP data from 443 distillation experiments (Bennett, et al., 1992; Bravo, et al., 1985; Fitz, et al., 1999; Gualito, et al., 1997; and others) and 410 mass transfer area experiments (Tsai, 2010). The correlating expressions for the mass transfer performance for these sheet metal structured packings are shown below:

ShV = 0.333 ReV1 ScV1 [cos(θ)/cos(π/4)]0.552

ShL = 0.1666ReL0.8 ScL0.758 [cos(θ)/cos(π/4)]0.747

am/ad = 0.8093 ReV-0.0293 WeL0.175 FrL-0.1208

ShV = (kyde/(cVDV))

ShL = (kxde/(cLDL))

de = 4ε/ad

The table below compares HETP predictions from the correlation above and from other popular mass transfer correlations in the open literature (Bravo, et al., 1985; Hanley and Chen, 2014; Wang, et al., 2016) with some of the experimental data we have collected. We find that the correlation of this work predicts the experimental HETP dataset with an average difference of 9.4% and a maximum difference of 50%; the next best correlation - that of Wang, et al. - predicts these same data with an average difference of 20% and a maximum difference of 172%.

Pressure

Packing

Fs

HETP

This Work

Hanley & Chen

Wang, et al.

BRF85

Light Key

Heavy Key

Pa

Pa1/2

m

m

m

m

m

P-XYLENE

O-XYLENE

2000.0

Mellapak 250Y

0.8478

0.3615

0.4016

0.4318

0.4002

0.2549

P-XYLENE

O-XYLENE

13000.0

Mellapak 250Y

0.2332

0.3493

0.3587

0.3306

0.2851

0.2154

P-XYLENE

O-XYLENE

100000.0

Mellapak 250Y

0.2817

0.3221

0.3195

0.2677

0.2463

0.2303

IC4

NC4

690000.0

Mellapak 250Y

1.1402

0.2868

0.3061

0.2346

0.3007

0.3002

IC4

NC4

1140000.0

Mellapak 250Y

0.7191

0.2778

0.2773

0.2112

0.2525

0.2131

CYCLOC6

NC7

33000.0

Mellapak 250Y

3.1962

0.4111

0.4080

0.4068

0.4906

0.5029

CHLORBZ

ETHBZ

96000.0

Mellapak 250Y

1.5976

0.3548

0.3387

0.2698

0.3305

0.3636

CHLORBZ

ETHBZ

96000.0

Mellapak 350Y

2.0988

0.2631

0.2571

0.2204

0.2335

0.2671

CHLORBZ

ETHBZ

5000.0

Mellapak 500Y

1.0143

0.2195

0.2141

0.2443

0.1694

0.1196

2ME2BUTL

ISOBUTL

20000.0

Mellapak 500Y

1.2422

0.2805

0.2364

0.4578

0.2673

0.1584

2ME2BUTL

ISOBUTL

10000.0

Mellapak 500Y

1.1324

0.2694

0.2502

0.6447

0.3234

0.1488

2ME2BUTL

ISOBUTL

2000.0

Mellapak 500Y

1.6408

0.3365

0.2934

1.6509

0.5715

0.1538

CHLORBZ

ETHBZ

2000.0

Mellapak 500X

1.3943

0.2846

0.2811

0.7395

0.2240

0.1389

CHLORBZ

ETHBZ

10000.0

Mellapak 500X

1.3977

0.2780

0.2630

0.4882

0.1957

0.1578

CHLORBZ

ETHBZ

20000.0

Mellapak 500X

0.6351

0.2670

0.2490

0.4033

0.1654

0.1365

CHLORBZ

ETHBZ

95000.0

Mellapak 500X

1.9088

0.2434

0.2353

0.2651

0.1741

0.1931

2ME2BUTL

ISOBUTL

10000.0

Mellapak 500X

1.7589

0.3269

0.3225

2.2484

0.3967

0.1927

2ME2BUTL

ISOBUTL

20000.0

Mellapak 500X

1.3913

0.3035

0.2999

1.4575

0.3175

0.1865

2ME2BUTL

ISOBUTL

95000.0

Mellapak 500X

1.4372

0.2582

0.2609

0.5831

0.2208

0.1991

CHLORBZ

ETHBZ

10265.8

Mellapak 250Y

1.4602

0.3889

0.3810

0.3434

0.3772

0.3189

CHLORBZ

ETHBZ

10265.8

Mellapak 250Y

2.4386

0.3975

0.3883

0.3448

0.4072

0.3638

CHLORBZ

ETHBZ

10265.8

Mellapak 252Y

3.0246

0.4071

0.3918

0.3454

0.4208

0.3852

P-XYLENE

O-XYLENE

13332.2

Mellapak 252Y

2.9485

0.3553

0.3861

0.3363

0.4136

0.4035

CYCLOC6

NC7

165474.2

Mellapak 252Y

1.4631

0.3387

0.3479

0.3027

0.3624

0.3981

CYCLOC6

NC7

101325.0

Mellapak 752Y

1.7872

0.2271

0.2028

0.2164

0.1769

0.1943

ISOC8

TOLUENE

13332.2

ISP IT

1.4225

0.3105

0.3282

0.3567

0.3517

ISOC8

TOLUENE

13332.2

ISP 4T

1.3958

0.5555

0.6257

0.5648

0.8315

ARGON

OXYGEN

206842.7

Flexipac 500Y

0.9095

0.1811

0.1784

0.1586

0.1523

0.1533

P-XYLENE

O-XYLENE

5332.9

Flexipac 1.4X

2.5618

0.3454

0.3787

0.7143

0.3428

0.2802

P-XYLENE

O-XYLENE

26664.5

Flexipac 1.4X

2.2568

0.3493

0.3490

0.4606

0.3011

0.3037

P-XYLENE

O-XYLENE

159986.8

Flexipac 1.4X

1.5127

0.3150

0.3068

0.2799

0.2503

0.2824

P-XYLENE

O-XYLENE

439963.8

Flexipac 1.4X

1.4517

0.2731

0.2801

0.2105

0.2294

0.2549

P-XYLENE

O-XYLENE

5332.9

Flexipac 1.6X

1.2931

0.3531

0.4332

0.7964

0.3858

P-XYLENE

O-XYLENE

26664.5

Flexipac 1.6X

1.6225

0.3835

0.4043

0.5150

0.3551

P-XYLENE

O-XYLENE

159986.8

Flexipac 1.6X

1.1101

0.3581

0.3559

0.3131

0.2956

P-XYLENE

O-XYLENE

439963.8

Flexipac 1.6X

1.0491

0.3302

0.3247

0.2354

0.2699

In addition, we have used this new correlation to model the performance of several carbon capture pilot plant experiments reported in the literature (Gabrielson 2007 ; Notz et al., 2012) . Those results, along with results for the Bravo, Rocha Fair correlation of 1985 (Bravo, et al., 1985), the 2014 correlation of Hanley and Chen, and the 2016 correlation of Wang, et al., are summarized below. Again, the correlation of this work outperforms the other correlations examined.

Gabrielson Data

Run 1
Experimental This work Wang Hanley/Chen BRF 85
Gas CO2 conc. Bottom (%vol) 2.62 2.62 2.62 2.62 2.62
Gas CO2 conc. Top (%vol) 1.69 1.645 1.602 1.089 1.278
Liquid CO2 loading top 0.072 0.07201 0.7201 0.07201 0.07201
Liquid CO2 loading bottom 0.178 0.183 0.1878 0.2451 0.224
Run 3
Experimental This work Wang Hanley/Chen BRF 85
Gas CO2 conc. Bottom (%vol) 4.17 4.17 4.17 4.17 4.17
Gas CO2 conc. Top (%vol) 2.36 2.173 2.095 1.514 1.64
Liquid CO2 loading top 0.084 0.084 0.084 0.084 0.084
Liquid CO2 loading bottom 0.169 0.1789 0.1825 0.2093 0.2035
Run 6
Experimental This work Wang Hanley/Chen BRF 85
Gas CO2 conc. Bottom (%vol) 4.58 4.58 4.58 4.58 4.58
Gas CO2 conc. Top (%vol) 2.9 2.883 2.785 2.142 2.337
Liquid CO2 loading top 0.147 0.147 0.147 0.147 0.147
Liquid CO2 loading bottom 0.226 0.2272 0.2318 0.2611 0.2523
Run 11
Experimental This work Wang Hanley/Chen BRF 85
Gas CO2 conc. Bottom (%vol) 10.27 10.27 10.27 10.27 10.27
Gas CO2 conc. Top (%vol) 8.01 8.048 7.797 6.474 7.108
Liquid CO2 loading top 0.284 0.284 0.284 0.284 0.284
Liquid CO2 loading bottom 0.4 0.3945 0.4057 0.4663 0.438

Notz, et al., Experiment 2 Data

Experimental BRF85 Hanley/Chen Wang This work
GASOUT mflow (kg/hr) 65.6 66.3391 66.3941 66.6300 66.6127
GASOUT mfrac CO2 0.088 0.0750 0.0757 0.0795 0.0816
LEANIN mflow (kg/hr) 200 198.3004 198.3799 197.6807 197.6336
LEANIN molefrac (nCO2/nMEA) 0.308 0.2988 0.3022 0.2926 0.2899
RICHOUT mflow (kg/hr) 207.4 205.8422 205.9266 205.2253 205.1806
RICHOUT molefrac (nCO2/nMEA) 0.464 0.4692 0.4712 0.4553 0.4490
CO2OUT mflow (kg/hr) 6.14 7.0062 6.9543 6.6847 6.5384
CO2OUT mfrac CO2 0.996 0.9945 0.9945 0.9945 0.9945
WATERMU mflow (kg/hr) 1.21 1.4846 1.5416 1.7765 1.7660
RICHOUT HeatX duty (kW) 12.4036 11.9129 11.8712 11.9612 11.9935
LEANIN H2O (w/w) 0.653 0.6519 0.6514 0.6524 0.6526
LEANIN MEA (w/w) 0.284 0.2864 0.2863 0.2871 0.2873
LEANIN CO2 (w/w) 0.063 0.0617 0.0623 0.0605 0.0600

Future work will attempt to incorporate improved column hydraulic and pressure drop predictions to supplement the mass transfer correlation reported in this talk.

REFERENCES

Agrawal R, Woodward DW, Ludwig KA, Bennett DL. Impact of low pressure drop structure packing on air distillation. Paper presented at Distillation and Absorption: IChemE Symposium Series 128. Maastricht, The Netherlands, 1992.

Bravo JL, Rocha JA, Fair JR. Mass transfer in gauze packings. Hydrocarbon Process. 1985;64:91.

Chao Wang, Di Song, Frank A. Seibert, and Gary T. Rochelle. Dimensionless Models for Predicting the Effective Area, Liquid-Film, and Gas-Film Mass-Transfer Coefficients of Packing. Industrial & Engineering Chemistry Research. 2016 55 (18), 5373-5384

Fitz CW, Kunesh JG, Shariat A. Performance of structured packing in a commercial-scale column at pressures of 0.02–27.6 bar. Ind Eng Chem Res. 1999;38:512–518.

Gabrielsen J. CO2 capture from coal fired power plants. PhD Thesis, Technical University of Denmark, 2007.

Gualito JJ, Cerino FJ, Cardenas JC, Rocha JA. Design method for distillation columns filled with metallic, ceramic, or plastic structured packings. Ind Eng Chem Res. 1997;36:1747–1757.

Hanley B, Chen C-C. Letter to the Editor. AIChE J. 2012;58:132–152.

Notz, R., Mangalapally, H.P., Hoch, S., Hasse, H., 2011. Post combustion CO2 capture by reactive absorption: Pilot plant description and results of systematic studies with MEA. International Journal of Greenhouse Gas Control 6 (2012), 84-122.

Tsai, Robert E. Mass Transfer Area of Structured Packing. Ph.D. Dissertation. 2010.

Checkout

This paper has an Extended Abstract file available; you must purchase the conference proceedings to access it.

Checkout

Do you already own this?

Pricing

Individuals

AIChE Pro Members $150.00
AIChE Emeritus Members $105.00
Employees of CCPS Member Companies $150.00
AIChE Graduate Student Members Free
AIChE Undergraduate Student Members Free
AIChE Explorer Members $225.00
Non-Members $225.00