the Promoter Calculator - a Sequence-to-Function Biophysical Model of Transcriptional Initiation for Sigma70 Promoters with Any Sequence | AIChE

the Promoter Calculator - a Sequence-to-Function Biophysical Model of Transcriptional Initiation for Sigma70 Promoters with Any Sequence

Authors 

Salis, H., Pennsylvania State University
Hossain, A., Penn State University
Engineering synthetic promoters with precision control has remained a challenge due to our inability to predict how a promoter's sequence and DNA context controls its function and mRNA output. Here, we developed an accurate sequence-to-function model of transcriptional initiation enabling the automated design of synthetic promoters and the a priori prediction of cryptic promoters - both of which are needed to advance Synthetic Biology towards genome-scale functional design. To do this, we combined oligopool synthesis, library-based cloning, and next-generation sequencing to construct and characterize 14,206 rationally designed sigma70 promoters in vitro. Measurements include transcriptional start site frequencies and overall mRNA levels. This approach enables highly-parallel characterization of constitutive promoter activity without confounding factors such as unintentional transcriptional regulation, non-sigma70 activity, and mRNA decay. These measurements, in combination with machine learning, were used to parameterize a thermodynamic model quantifying the interactions controlling transcription rate. For demonstration, the “Promoter Calculator” was used to accomplish three major tasks – accurate prediction of thousands of sigma70 promoters across various conditions, the de novo design of novel sigma70 promoters, and the identification of cryptic promoters internal to a genetic circuit. 4,350 highly non-repetitive promoters and 6,165 genome-integrated promoters characterized in vivo were accurately predicted by the model with Spearman Rank-Order Coefficients of .68 and .78, respectively. Promoters designed de novo using the Promoter Calculator exhibited a 683-fold range in expression in vivo resulting in a Pearson Correlation Coefficient of .85. The Promoter Calculator was used to analyze a genetic circuit containing 11 circuit promoters and 29 cryptic promoters. The model identified 29 sigma70 promoters out of 40 observed promoters (72.5% accurate), including 10/11 circuit promoters and 19/29 cryptic promoters. The Promoter Calculator facilitates context-aware, rational promoter design without relying on a fixed table of pre-characterized sequences while serving as a powerful tool in promoter identification.