Caleb Bashor uses approaches in synthetic biology to understand how complex behavior emerges from the properties of components that comprise cellular regulatory networks. His research focus is on engineering synthetic regulatory programs capable of reshaping cellular phenotype, with an eye on developing transformational cell-based therapeutics from engineered human cells.
The Bashor lab utilizes diverse eukaryotic cell types (mammalian immune and stem cells) to learn how to reprogram the complex regulatory circuitry involved in cellular sense and response. His approach uses theory and modelling to guide circuit design, and incorporates DNA assembly, microfluidics, and next-generation sequencing to build and characterize circuit libraries in high-throughput.
As a postdoctoral research fellow in the laboratory of Professor James Collins at MIT’s IMES, Bashor established foundational strategies for the comprehensive, bottom-up construction of synthetic regulatory systems in eukaryotes, focusing on the synthesis of both transcriptional (gene networks) and post-translational (signaling pathways) circuits. Both of these platforms will be brought to bear on his circuit engineering efforts.