(364e) Therapeutic Contact Lenses Via Biomimetic Imprinting
AIChE Annual Meeting
2006
2006 Annual Meeting
US - Japan Joint Topical Conference on Medical Engineering, Drug Delivery Systems and Therapeutic Systems
Therapeutic Devices, Nanotechnology and Molecular Imprinting
Wednesday, November 15, 2006 - 10:00am to 10:20am
A biomimetic approach has been exercised to design and synthesize novel contact lenses, to tackle the unmet need for the controlled loading and release of therapuetics on the surface of the eye. This work will demonstrate the formation and characterization of novel lenses with controlled loading and release of ocular H1-antihistamines, and antibiotics. Since ocular bioavailability of topical drugs is very poor (typically less than 7% is absorbed by the eye), a high dosage is needed which typically prohibits contact lens use and warrants multiple dosages a day.
Controlling and tailoring the release of drugs via novel contact lenses with significantly enhanced loading can solve these problems with increased drug bioavailability, less irritation to eye tissue, and reduced eye and body side effects. Conventional soft contact lenses typically do not work due to a lack of sufficient drug loading and poor control of drug release. This new class of recognitive intelligent biomaterials is designed by incorporating motifs with structural and molecular homology to biological receptor docking sites and has a strong potential to work with a wide spectrum of drugs and impact the administration of a number of ocular therapies. Gels of multiple binding points with varying functionalities outperformed gels formed with fewer types of functionality and showed the greatest loading potential (i.e., up to 6 times more than control lenses) with mechanical and optical properties comparable to conventional lenses. Dynamic drug release profiles under in vitro physiological conditions demonstrated that release rates can be tailored via type and amount of functionality and a viable therapeutic concentration of drug can be delivered at a constant rate for extended periods from 16 hours to weeks depending on formulation.
Checkout
This paper has an Extended Abstract file available; you must purchase the conference proceedings to access it.
Do you already own this?
Log In for instructions on accessing this content.
Pricing
Individuals
2006 Annual Meeting
AIChE Pro Members | $150.00 |
AIChE Graduate Student Members | Free |
AIChE Undergraduate Student Members | Free |
AIChE Explorer Members | $225.00 |
Non-Members | $225.00 |
US - Japan Joint Topical Conference on Medical Engineering, Drug Delivery Systems and Therapeutic Systems only
AIChE Pro Members | $100.00 |
Food, Pharmaceutical & Bioengineering Division Members | Free |
AIChE Graduate Student Members | Free |
AIChE Undergraduate Student Members | Free |
AIChE Explorer Members | $150.00 |
Non-Members | $150.00 |