(475aa) Identification of Correlation and Uncertainty among Parameters Affecting the Dynamics of Blood Glucose Models: Effect of Experimental Uncertainty
AIChE Annual Meeting
2006
2006 Annual Meeting
US - Japan Joint Topical Conference on Medical Engineering, Drug Delivery Systems and Therapeutic Systems
General Papers on Medical Engineering, Drug Delivery and Therapeutic Systems: Poster Session
Wednesday, November 15, 2006 - 6:30pm to 9:00pm
Pharmacokinetic-pharmacodynamic models are useful tools for predicting the dynamic distribution of a substance throughout the human body. However, care is required, as uncertainty in the values of the model's parameters can affect the nature of the model prediction. Parameter uncertainty can originate with a number sources, including imprecision in the collection of patient data or from any physical variability within the patients themselves. Furthermore, correlation among the model parameters can indicate that degree of allowable uncertainty for each model parameter. We use published clinical data from frequently sampled intravenous glucose tolerance tests (FSIGTT) and the Oral Glucose Tolerance Test (OGTT) to identify correlation structures among the parameters of gluco-regulatory models. The correlation were identified by performing Monte Carlo simulation on the regression of the parameters. We show that the correlation structure of the parameters plays a major role on the stability and robustness of the models studied, which means in order to perform uncertainty analysis on the parameters of these models, one must take into the correlation structures.