(377a) Gas and Particle Phase Chemistry of Linalool Ozone Reactions and Analysis of Resulting Reactive Oxygen Species | AIChE

(377a) Gas and Particle Phase Chemistry of Linalool Ozone Reactions and Analysis of Resulting Reactive Oxygen Species

Authors 

Sidheswaran, M. - Presenter, Syracuse University
Tavlarides, L. L. - Presenter, Syracuse University


Linalool ozone reactions were conducted in two stainless steel chambers (100L and 54 m3) and the gas and particle phase chemistry have been studied. A preliminary analysis of the gas and particle phase products have been performed and a number of intermediates including 2-ethenyl-2-methyl-5-hydroxytetrahydrofuran, 2(3H)-furanone-5-ethenyldihydro-5-methyl-, tetrahydro-1-methyl-5-oxo2-furancarboxylic acid and 2-hydroxy-2,3-dimethylsuccinic acid have been identified. Further, reactive oxygen species have been identified as produced during the reaction process. Fluorescence techniques will be employed in identifying and quantifying these species in the sub-micron particles. The reaction rate constant for the oxidation of linalool by ozone was found to be 3.49x10-16 cm3/molecules-sec. The particle size distributions of the particles produced due to these reactions has been obtained. It was concluded that the concentration of linalool and the concentration of ozone play a vital role in the formation and growth of particles. Yield of the products in the particle phase has also been obtained to study the partition of organics produced in the gas and particle phase.

Checkout

This paper has an Extended Abstract file available; you must purchase the conference proceedings to access it.

Checkout

Do you already own this?

Pricing

Individuals

AIChE Pro Members $150.00
AIChE Graduate Student Members Free
AIChE Undergraduate Student Members Free
AIChE Explorer Members $225.00
Non-Members $225.00