(184e) Molecular Simulations of Adsorption of RDX and TATP In a Photoactive Metal Organic Framework (MOF) | AIChE

(184e) Molecular Simulations of Adsorption of RDX and TATP In a Photoactive Metal Organic Framework (MOF)

Authors 

Xiong, R. - Presenter, University of Tennessee
Keffer, D. J. - Presenter, University of Tennessee, Knoxville
Doss, B. L. - Presenter, West Virginia University
Lewis, J. P. - Presenter, West Virginia University
Michalkova, A. - Presenter, Jackson State University
Leszczynski, J. - Presenter, Jackson State University
Adhangale, P. - Presenter, University of Tennessee


In order for effective explosive sensing, the amount delivered to a sensor must exceed its detection threshold. Unfortunately, current sensors do not selectively trap adequate explosive molecules. With the ability to tailor Metal Organic Frameworks (MOFs) and the incorporation of photocatalytic properties, there is hope that the hybrid materials called photoactive MOFs exhibiting high photonic sensitivity can be designed.

In order to test the feasibility of selectively trapping explosive molecules for detection, molecular simulations of RDX and TATP within a photoactive MOF were performed using grand canonical Monte Carlo (GCMC) and molecular dynamics (MD). The simulations give new insight into the competitive nature of the adsorption and the binding of the explosive molecules to the framework. Adsorption isotherms, mobility of the RDX within the framework, the occupancy of each type of cage within the unit cell, and the framework's effect on the configuration of the explosive molecules were also investigated. Preliminary calculations indicated that this photoactive MOF at least concentrates RDX from a gas phase by a factor of 280 on a volumetric basis.

Topics