(416e) Kinetic Resolution of (R,S)-Pyrazolides Containing Substituents in the Leaving Pyrazole for Increased Lipase Enantioselectivity
AIChE Annual Meeting
2010
2010 Annual Meeting
Nanoscale Science and Engineering Forum
Nanoscale Science and Engineering in Biomolecular Catalysis I
Wednesday, November 10, 2010 - 10:10am to 10:35am
With hydrolysis of (R,S)-azolides in water-saturated methyl tert-butyl ether (MTBE) via Candida antarctica lipase B (CALB) as the model system, (R,S)-pyrazolides containing a leaving 3-, 4- or 3,4-substituted-pyrazole moiety are selected as the best substrates for preparing various optically pure carboxylic acids containing an á-chiral center. Great improvements of enzyme activity for the (R)-enantiomers with excellent enantioselectivity (VR/VS > 100) are obtainable, if (R,S)-pyrazolides containing a leaving 3- or 3,4-substituted-pyrazole moiety are employed for the hydrolysis or alcoholysis by methanol in anhydrous MTBE. A detailed kinetic analysis for (R,S)-N-2-phenylpropionylpyrazoles indicates that a bulky 3-substituent such as 3-(3-bromophenyl) or 3-(2-pyridyl) in the leaving pyrazole moiety has profound effects on decreasing the nucleophilic attack and proton transfer of catalytic serine for the slow-reacting enantiomer in anhydrous MTBE, as well as that and substrate affinity for both enantiomers in water-saturated MTBE. The resolution platform is also successfully applied to the hydrolysis of (R,S)-pyrazolides in water-saturated cyclohexane via Candida rugosa lipase (Lipase MY) having opposite enantioselectivity to CALB.
Topics
Checkout
This paper has an Extended Abstract file available; you must purchase the conference proceedings to access it.
Do you already own this?
Log In for instructions on accessing this content.
Pricing
Individuals
AIChE Pro Members | $150.00 |
AIChE Graduate Student Members | Free |
AIChE Undergraduate Student Members | Free |
AIChE Explorer Members | $225.00 |
Non-Members | $225.00 |