(538b) An Eulerian, Lattice-Based Cellular Automata Approach for Modeling Multiphase Flows
AIChE Annual Meeting
2010
2010 Annual Meeting
Particle Technology Forum
Industrial Application of Computational and Numerical Approaches to Particle Flow II
Wednesday, November 10, 2010 - 3:40pm to 4:05pm
Commonly found in nature and engineering, multiphase flows contain interacting media of different phases. Traditionally, there have been two ways to model such flows in computational fluid dynamics (CFD). The Eulerian-Eulerian approach, in which each phase is modeled as interpenetrating continua, is computationally efficient but does not provide the discrete particle locations. The Eulerian-Lagrangian approach treats the dispersed phase as individual particles interacting with a fluid continuum, but is a computationally demanding approach especially for flows containing a large number of particles. This work introduces an Eulerian-Lagrangian approach for modeling multiphase flows, in which the fluid is modeled as a continuum, and the particle phase is modeled using lattice-based cellular automata (CA). In CA, particles are modeled on a lattice which allows them to evolve spatially and temporally according to rule-based mathematics or physics-based kinematic relations. By employing the latter, this work examines the feasibility of this approach for modeling multiphase flows while achieving significant speedups in computational times.
Topics
Checkout
This paper has an Extended Abstract file available; you must purchase the conference proceedings to access it.
Do you already own this?
Log In for instructions on accessing this content.
Pricing
Individuals
AIChE Pro Members | $150.00 |
AIChE Graduate Student Members | Free |
AIChE Undergraduate Student Members | Free |
AIChE Explorer Members | $225.00 |
Non-Members | $225.00 |