(418b) XPS and in-Situ SERS Investigations of Metal Boride Nanoparticles for the Oxygen Evolution Reaction
AIChE Annual Meeting
2012
2012 AIChE Annual Meeting
Catalysis and Reaction Engineering Division
Electrocatalysis and Photoelectrocatalysis: Fundamentals and Applications II
Wednesday, October 31, 2012 - 8:50am to 9:10am
Water electrolysis to generate H2, a potential fuel source or CO2 reductant, provides a large-scale solution to sustainably meet growing energy demand. In order for this approach to be viable, however, highly efficient conversion of water to H2 and O2 must occur. Even the most active oxygen evolution reaction (OER) electrocatalysts demonstrate large overpotentials due to the slow kinetics of this reaction. While iridum is the best elemental catalyst for the OER in alkaline electrolyte, the high abundance and stability of Ni and Ni-based alloys result in their predominant use within commercial electrolyzers. In particular, alloys of Ni with B or Fe have shown high activity for the OER, though little is known about the effects of B and Fe addition to Ni.
To investigate Ni-B and -Fe alloys for the OER, NiOx, Ni2.5B, Ni1.3FeOX and Ni1.7FeB1.2 nanoparticle electrocatalysts were prepared and studied. Activity comparisons were also made to FeOx, Fe2B, and bulk Ir. The OER activity increases in the order Fe2B < NiOX < Ni1.3FeOX < bulk IrO2 < Ni2.5B < Ni1.7FeB1.2, with the turnover frequency of Ni1.7FeB1.2 approximately double that of bulk Ir. In-situ surface-enhanced Raman spectroscopy (SERS) and ex-situ x-ray photoelectron spectroscopy (XPS) were used to determine the active phase and surface oxidation states of the Ni nanoparticle electrocatalysts, which are discussed in relation to observed OER activities.
See more of this Session: Electrocatalysis and Photoelectrocatalysis: Fundamentals and Applications II
See more of this Group/Topical: Catalysis and Reaction Engineering Division
See more of this Group/Topical: Catalysis and Reaction Engineering Division