(588b) Floret-Shaped Solid Domains On Giant Fluid Lipid Vesicles Induced by pH | AIChE

(588b) Floret-Shaped Solid Domains On Giant Fluid Lipid Vesicles Induced by pH



Lateral lipid phase separation of titratable PS or PA lipids and their assembly in domains induced by changes in pH are significant in liposome-based drug delivery: environ- mentally responsive lipid heterogeneities can be tuned to alter collective membrane properties such as permeability (altering drug release) and surface topography (altering drug carrier reactivity) impacting, therefore, the therapeutic outcomes. At the micrometer scale fluorescence microscopy on giant unilamellar fluid vesicles (GUVs) shows that lowering pH (from 7.0 to 5.0) promotes condensation of titratable PS or PA lipids into beautiful floret-shaped domains in which lipids are tightly packed via hydrogen-bonding and van der Waals interactions. The order of lipid packing within domains increases radially toward the domain center. Lowering pH enhances the lipid packing order, and at pH 5.0 domains appear to be entirely in the solid (gel) phase. Domains phenomenologically comprise a circular “core” cap beyond which interfacial instabilities emerge resembling leaf-like stripes. At pH 5.0 stripes are of almost vanishing Gaussian curvature independent of GUVs’ preparation path and in agreement with a general condensation mechanism. Increasing incompressibility of domains is strongly correlated with a larger number of thinner stripes per domain and increasing relative rigidity of domains with smaller core cap areas. Line tension drives domain ripening; however, the final domain shape is a result of enhanced incompressibility and rigidity maximized by domain coupling across the bilayer. Introduction of a transmembrane osmotic gradient (hyperosmotic on the outer lipid leaflet) allows the domain condensation process to reach its maximum extent which, however, is limited by the minimal expansivity of the continuous fluid membrane.
See more of this Session: Self-­Assembly in Solution II

See more of this Group/Topical: Engineering Sciences and Fundamentals