(109h) Efficiency of siRNA Delivery By Lipid Nanoparticles Is Limited By Endocytic Recycling
AIChE Annual Meeting
2013
2013 AIChE Annual Meeting
Materials Engineering and Sciences Division
Biomaterials for Nucleic Acid Delivery
Monday, November 4, 2013 - 2:45pm to 3:00pm
Despite substantial efforts to understand the interactions between nanoparticles and cells, the cellular processes that determine the efficiency of intracellular drug delivery remain largely unclear. Here we examined cellular uptake of siRNA delivered in lipid nanoparticles (LNPs) using cellular trafficking probes in combination with automated high-throughput confocal microscopy as well as defined perturbations of cellular pathways paired with systems biology approaches to uncover protein-protein and protein-small molecule interactions. We show that multiple cell signaling effectors are required for initial cellular entry of LNPs through macropinocytosis, including proton pumps, mTOR, and cathepsins. SiRNA delivery is substantially reduced by ≅70% as internalized siRNA undergoes exocytosis through egress of LNPs from late endosomes/lysosomes. Niemann Pick type C1 (NPC1) is shown to be an important regulator of the major recycling pathways of LNP-delivered siRNAs. NPC1-deficient cells show enhanced cellular retention of LNPs inside late endosomes and lysosomes and increased gene silencing of the target gene. Our data suggests that siRNA delivery efficiency might be improved by designing delivery vehicles that can escape the recycling pathways.