(261i) A Computational Investigation Of Attrition-Enhanced Chiral Symmetry Breaking In Conglomerate Crystals | AIChE

(261i) A Computational Investigation Of Attrition-Enhanced Chiral Symmetry Breaking In Conglomerate Crystals

Authors 

Ricci, F. - Presenter, Princeton University
Stillinger, F. H., Princeton University
Debenedetti, P., Princeton University



Attrition-enhanced chiral symmetry breaking in crystals, also known as Viedma ripening, provides a direct route to solid-phase homochirality in a controllable manner. Hence, it is of inherent interest to those who study chiral symmetry-breaking/amplification mechanisms.  When applied to intrinsically chiral molecules, Viedma ripening may have implications for the origin of biological homochirality, as well as applications in chiral drug resolution. To date, the mechanistic details underlying this phenomenon is still a matter of debate. We employ a Monte Carlo algorithm to study this driven system, in order to gain further insights into the mechanisms capable of reproducing key experimental signatures. We provide a comprehensive numerical investigation of how the model parameters (attrition rate, liquid-phase racemization kinetics, and the relative rates of growth and dissolution kinetics) impact the system’s overall behavior. It is shown that size-dependent crystal solubility alone is insufficient to reproduce most of the experimental signatures of Viedma ripening, and that some form of a solid-phase chiral feedback mechanism is required in order to reproduce experimentally-observed behavior. In this work, such feedback mechanisms can take the form of agglomeration, or of artificial modification of the size dependent growth kinetics.

Topics