(345f) Modeling Photoelectrochemical Water Oxidation and CO2 Reduction With DFT+U, DFT+D, and Heterogeneous Solvation
AIChE Annual Meeting
2013
2013 AIChE Annual Meeting
Catalysis and Reaction Engineering Division
Applications of DFT+X in Catalysis II
Tuesday, November 5, 2013 - 4:45pm to 5:00pm
Identifying and developing efficient, economical, and feasible sustainable energy technologies is of great interest, and first-principles modeling based on Kohn-Sham Density Functional Theory (KS-DFT) can provide critical fundamental insight needed to engineer sunlight-powered CO2-neutral energy conversion processes. However, depending on device materials and/or experimental conditions employed, standard KS-DFT alone will not be appropriate for accurate and physical predictions of these processes. We highlight recent findings from computational investigations that model and optimize electrocatalysis of first-row transition metal oxide photoelectrode materials using DFT+U methodology with ab initio derived U–J values. Surface water structures, mechanistic steps, as well as dopants that optimize electrocatalysis will be reported. We also discuss pyridinium-catalyzed photoelectrochemical CO2 reduction with p-GaP photoelectrochemical cells. Here, treating the effects of van der Waals dispersion and solvation at the electrode due to the electrolyte is critically important to unraveling its complicated reaction mechanism. Our results indicate that pyridinium in these photoelectrochemical cells serendipitously plays a similar role as biological redox catalysts.
Checkout
This paper has an Extended Abstract file available; you must purchase the conference proceedings to access it.
Do you already own this?
Log In for instructions on accessing this content.
Pricing
Individuals
AIChE Pro Members | $150.00 |
AIChE Graduate Student Members | Free |
AIChE Undergraduate Student Members | Free |
AIChE Explorer Members | $225.00 |
Non-Members | $225.00 |