(392e) X-Ray and Raman Transparent Solvent Resistant Microfluidic Platforms to Screen Solid Forms of Pharmaceuticals | AIChE

(392e) X-Ray and Raman Transparent Solvent Resistant Microfluidic Platforms to Screen Solid Forms of Pharmaceuticals

Authors 

Goyal, S. - Presenter, University of Illinois at Urbana Champaign
Economou, A., University of Illinois at Urbana Champaign
Lee, G., University of Illinois at Urbana Champaign
Gong, Y., AbbVie Inc.
Zhang, G. G. Z., AbbVie Inc.
Kenis, P. J. A., University of Illinois at Urbana Champaign



We present microfluidic platforms for screening solid form (salts, co-crystals, and polymorphs) of pharmaceutical parent compounds (PC). Success in finding a crystalline solid form of a PC with optimized CMC properties using conventional screening procedures is limited due to the limitations of the number of experimental conditions that can be investigated while utilizing small quantities of PCs available (≈ 10 mg) in the early stages of drug development. Microfluidic technology allows screening with reduced sample volumes of PC and precipitants (salt or cocrystal formers or antisolvents) solutions [1] and thereby enable screening of multiple conditions using the limited amount of PC.  This will enable early identification of all possible solid forms of PCs and help reduce the time and money invested in the solid form development. 

To date, we have reported on hybrid polymer-based microfluidic platforms that permit combinatorial mixing of PC and precipitants solutions on-chip in arrays of 24/48, 50 to 200 nL wells, which is a drastic reduction in the volume of PC needed per condition compared to traditional approaches (~5 to 100 ul per condition [2]) [3-6].  These platforms were compatible with mild organic solvents and water, and enabled identification of the solid form crystallized on-chip via on-chip Raman spectroscopy. We screened for solid forms of PCs employing free interface diffusion (FID) mixing [3,5], antisolvent addition (AS) [4], and solvent evaporation [6] modes of crystallization employing the polymer-based platforms.  

Here we present the design, fabrication, and application of solvent resistant microfluidic platforms for solid form screening of PCs.  These newly developed hybrid polymer-based microfluidic platforms are compatible with a much wider range of solvents including chloroform, toluene, and hexanes, thereby enabling investigation of a much wider range of conditions on-chip as well as allow a better control on the supersaturation levels attained on-chip.  We employed these platforms to screen for solid forms of model compounds including theophylline, piroxicam, and carbamazepine.  On-chip Raman and X-ray analysis was employed to identify and distinguish different solid forms crystallized on-chip.  These platforms have the potential to expedite the drug development process by enabling solid form screening at the early stages of drug development. 

References

[1] C. Hansen, E. Skordalakes, J. Berger, S. Quake, Proc. Nat'l Acad. Sci., 2002, 99, 16531-6.

[2] S. Talreja, P.J.A. Kenis, et al. J. Appl. Crystallography, 2005, 38, 988-995.

[3] M.R. Thorson, S. Goyal, P.J.A. Kenis, et al. Lab Chip, 2011, 11, 3829-3837

[4] M.R. Thorson, S. Goyal, P.J.A. Kenis, et al.  CrystEngComm, 2012, 14, 2404-2412

[5] S. Goyal, P.J.A. Kenis, et al. Crystal Growth & Design, 2012, 12 (12), 6023-6034

[6] S. Goyal, P.J.A. Kenis, et al. Lab Chip, 2013, 13, 1708-1723

Topics