(397l) Sulphur-Infiltrated 3D Porous Carbon Microsphere Nanoarchitecture for High Energy Lithium-Sulphur Batteries
AIChE Annual Meeting
2013
2013 AIChE Annual Meeting
Nanoscale Science and Engineering Forum
Poster Session: Nanoscale Science and Engineering
Tuesday, November 5, 2013 - 6:00pm to 8:00pm
Sulfur has received increasing attention as a cathode material for lithium-sulfur batteries due to its high theoretical specific capacity of 1675 mAh g-1, which is 5 times higher than that of conventional lithium-ion batteries. However, poor electronic conductivity of sulfur, dissolution of the lithium polysulfide intermediates and large volume expansion of sulfur during cycling limit the commercialization of Li-S batteries. Herein, we demonstrate the design of a smart-structured sulfur-infiltrated 3D multi-modal porous carbon microsphere to overcome these obstacles. This 3D multi-modal porous microsphere carbon (PMC) have large surface area, uniform pore size, high pore volume, and interconnected pore structure, that will ensure the access connection of the electrolyte through the PMC and uniformly loading for sulfur particles in the spaces within the 3D structure, thus limiting the volume expansion and dissolution of lithium polysulfide. Hence, a higher capacity, better cycling performance and stable Coulombic efficiency are expected. An initial capacity of 1289 mAh g-1 at 1C and Coulombic efficiency of 90% over 200 cycles are achieved.
Topics
Checkout
This paper has an Extended Abstract file available; you must purchase the conference proceedings to access it.
Do you already own this?
Log In for instructions on accessing this content.
Pricing
Individuals
AIChE Pro Members | $150.00 |
AIChE Graduate Student Members | Free |
AIChE Undergraduate Student Members | Free |
AIChE Explorer Members | $225.00 |
Non-Members | $225.00 |