(4dz) Tissue Engineering: From Microfluidic Devices to Biopreservation | AIChE

(4dz) Tissue Engineering: From Microfluidic Devices to Biopreservation

Authors 

Usta, O. B. - Presenter, Massachusetts General Hospital/Harvard Medical School/Shriners Hospital for Children



With the ever increasing cost of medical therapies and the nearly impossible odds of developing one successful drug that can pass the regulatory screenings, the time is right to search for cheaper, more efficient and higher throughput solutions for our screening and therapeutic needs. The micro-nano fabrication revolution in engineering and the ever improving computational capabilities are enabling technologies that now make this search more practical and feasible. Tissue engineering, a field that can take advantage of these advances, is still in its infancy despite being viewed as the future of medicine. As an engineer who has been trained extensively in computational modeling and has recently become experienced in bio-preservation and microfabrication; my ultimate goal is to contribute to tissue engineering finally bearing complete practical solutions and fundamental understanding by integrating all three areas of my current expertise; tissue engineering, biopreservation and computational modeling.

My long term vision is one where we can provide live tissue engineered products (TEPs), for clinical, research and industrial use, to anyone and anywhere in the world in a reliable and reproducible fashion. Such a vision requires a multidisciplinary research program which encompasses 1) tissue engineering 2) biopreservation 3) computational and theoretical modeling to accelerate experimental work. Accordingly my long term goal, as an independent faculty member, is to create a 3 thrust research program where I a) build micro/macro fabricated TEPs as organ models and assist/therapy devices (tissue engineering) b) devise optimized preservation methods to make the “off-the-shelf” dream a reality (bio-preservation) c) conduct coarse grained and detailed modeling to understand and accelerate experimental work (modeling).