(557a) Materials-Scale Implications of Solvent and Temperature On [6,6]-Phenyl-C61-Butyric Acid Methyl Ester (PCBM): A Theoretical Perspective | AIChE

(557a) Materials-Scale Implications of Solvent and Temperature On [6,6]-Phenyl-C61-Butyric Acid Methyl Ester (PCBM): A Theoretical Perspective

Authors 

Tummala, N. R. - Presenter, The University of Oklahoma
Mehraeen, S., University of Illinois At Chicago
Brédas, J. L., Georgia Institute of Technology
Risko, C., Georgia Institute of Technology



Packing and orientation of pi-conjugated molecules within the active layer of organic solar cells or other organic electronics devices, effectively controls the performance of these devices.[1-7] For this reason, the ability to understand and predict in detail how these molecules pack on their own and in the presence of trace solvents is an important step on the way to increase the  overall device efficiency. Here, we focus on [6,6]-phenyl-C61-butyric acid methyl ester (PCBM), an electron-acceptor material of choice in organic solar cells. Through molecular dynamics (MD) simulations, we examine the effects of temperature and trace solvents on the packing and morphological features of bulk PCBM.[8] Solubility (miscibility) parameters, melting and order-disorder transitions, surface energies, and orientational distributions as a function of different starting configurations are discussed. On the basis of the derived morphologies, we combine electronic-structure theory and a kinetic Monte Carlo approach to evaluate the parameters impacting electron mobility in crystalline and amorphous PCBM structures, which are used to explain the range of electron mobilities reported in the literature.

[1]        S. P. Tiwari, X.-H. Zhang, J. W. J. Potscavage, B. Kippelen, J. Appl. Phys. 2009, 106, 054504.

[2]        V. D. Mihailetchi, J. K. J. van Duren, P. W. M. Blom, J. C. Hummelen, R. A. J. Janssen, J. M. Kroon, M. T. Rispens, W. J. H. Verhees, M. M. Wienk, Adv. Funct. Mater. 2003, 13, 43.

[3]        M. T. Rispens, A. Meetsma, R. Rittberger, C. J. Brabec, N. S. Sariciftci, J. C. Hummelen, Chem. Commun. 2003, 2116.

[4]        L. Zheng, Y. Han, J. Phys. Chem. B 2012, 116, 1598.

[5]        F. Frigerio, M. Casalegno, C. Carbonera, T. Nicolini, S. V. Meille, G. Raos, J. Mater. Chem. 2012, 22, 5434.

[6]        L. Chang, H. W. A. Lademann, J.-B. Bonekamp, K. Meerholz, A. J. Moulé, Adv. Funct. Mater. 2011, 21, 1779.

[7]        D. L. Cheung, A. Troisi, J. Phys. Chem. C 2010, 114, 20479.

[8]        N. R. Tummala, Y. T. Fu, S. Mehraeen, C. Risko, J. L. Bredas, Adv. Funct. Mater. 2013, DOI:10.1002/adfm.201300918.

Topics