(707b) CO2 Capture and Conversion Based On ILs | AIChE

(707b) CO2 Capture and Conversion Based On ILs

Authors 

Zhang, S. - Presenter, Institute of Process Engineering, Chinese Academy of Sciences


                                                                     CO2 Capture and Conversion Based on ILs  

Suojiang Zhang*, Jian Sun

Institute of Process Engineering, Chinese Academy of Sciences,100190, Beijing, PR China

*Corresponding author: sjzhang@home.ipe.ac.cn

    An ionic liquid based CO2 capture technology has been developed. To enhance the absorption efficiency, a series of ILs were synthesized and screened including amino functionalized IL.[1] The performance of IL mixture for CO2 capture was also carried out.[2]The system integration result indicated that the new process resulted in about 27% reducing of energy consumption comparing to the traditional amine process.

    As a way out for CO2 capture, the synthesis of cyclic carbonates via cycloaddition of CO2 to epoxides is studied, where the synthesized ILs are found to be very efficient catalysts for the cycloaddition reaction. Our previous work indicated that the hydroxyl group in solvent, IL or carrier all could play a promotion role on the reaction. [3] Based on the fundamental understanding, hydroxyl or carboxyl-functionalized ILs were developed and found to be much more active.[4] Furthermore, these ILs are chemically immobilized on solid supports, including silica, resin, zeolites, and chitosan, which show high stability and efficiency.[5]

Refferences

[1]  a) X. P. Zhang, X. C. Zhang, H. F. Dong, Z. J. Zhao, S. J. Zhang, Y. Huang. Energy Environ. Sci., 2012, 5: 6668-6681. b) J. M. Zhang, J. Sun, X. C. Zhang, Y. S. Zhao, S. J. Zhang. Greenhouse Gas Sci Technol., 2011, 2:142-159.

[2]  a) Y. S. Zhao, X. P. Zhang, Y. P. Zhen, H. F. Dong, G. Y. Zhao, S. J. Zeng, X.Tian, S. J. Zhang. Int. J. Greenh. Gas Con., 2011, 5:367-373; b) Y. S. Zhao, X. P. Zhang, H. F. Dong, Y. P. Zhen, G. H. Li, S. J. Zeng, S. J. Zhang. Fluid Phase Equilib., 2011,302: 60-64.

[3]  a) J.Q. Wang, J. Sun, W.G Cheng, S.J. Zhang. Phys. Chem. Chem. Phys., 2012, 14, 11021-11026; b) J. Sun, J. Y. Ren, S. J. Zhang, W. G. Cheng. Tetrahedron Lett., 2009, 50(4): 423-426.

[4]  a) X. Chen, J. Sun, J. Q. Wang, W. G. Cheng. Tetrahedron Lett., 2012, 53: 2684-2688; b) J. Sun, L. J. Han, W. G. Cheng , J. Q. Wang, X. P. Zhang, S. J. Zhang. ChemSusChem., 2011, 4(4): 502-507; c) J. Sun, S. J. Zhang, W. G. Cheng, J. Y. Ren. Tetrahedron Lett., 2008, 49(22): 3588-3591.

[5]  a) W. G. Cheng, X. Cheng, J. Sun, J.Q. Wang, S. J. Zhang. Catal. Today, 2013, 200:117-124; b) J. Sun, J.Q. Wang, W. G. Cheng, J. X. Zhang, X. H. Li, S. J. Zhang, Y. B. She. Green Chem., 2012, 14: 654-660. c) J. Sun, W. G. Cheng, W. Fan, Y. H. Wang, Z. Y. Meng, S. J. Zhang. Catal. Today, 2009, 148: 361-367.

Acknowledgments

This work was supported by National Basic Research Program of China (2009CB219901), and National Science Fund of China (21006117).