(345c) Data-Driven Modeling of Sequential Batch-Continuous Process
AIChE Annual Meeting
2015
2015 AIChE Annual Meeting Proceedings
Computing and Systems Technology Division
Data Analysis and Big Data in Chemical Engineering
Tuesday, November 10, 2015 - 1:00pm to 1:15pm
Data-Driven Modeling of Sequential
Batch-Continuous Process
Jungup Park, Michael Baldea,
Thomas F. Edgar Department
of Chemical Engineering
The
University of Texas at Austin, 1 University Station C0400, Austin, TX 78712
Email:
mbaldea@che.utexas.edu
Complex
chemical processes can involve both batch and continuous stages. In this case,
raw materials and other ingredients are initially processed batch-wise, prior
to being fed to a processing line that operates continuously. The operating
conditions and operating performance of both the batch and the continuous
stages have an impact on the final product quality.
Such
batch-to-continuous processes pose specific analysis and control challenges.
The batch side of the process operation is carried out periodically at
specified time intervals. After each operating instance, the batch product is
fed to the continuous production flux. Empirical evidence suggests that this
mode of operation leads to a deterioration of the causal relation between the
properties of the batch product and the quality of the product of the
continuous process. This is further complicated by the time delay that is
inherently introduced by the continuous stage of the process between the
completion of the batch stage and any quality measurements obtained from the
final product.
Batch-Continuous Process
Jungup Park, Michael Baldea,
Thomas F. Edgar Department
of Chemical Engineering
The
University of Texas at Austin, 1 University Station C0400, Austin, TX 78712
Email:
mbaldea@che.utexas.edu
Complex
chemical processes can involve both batch and continuous stages. In this case,
raw materials and other ingredients are initially processed batch-wise, prior
to being fed to a processing line that operates continuously. The operating
conditions and operating performance of both the batch and the continuous
stages have an impact on the final product quality.
Such
batch-to-continuous processes pose specific analysis and control challenges.
The batch side of the process operation is carried out periodically at
specified time intervals. After each operating instance, the batch product is
fed to the continuous production flux. Empirical evidence suggests that this
mode of operation leads to a deterioration of the causal relation between the
properties of the batch product and the quality of the product of the
continuous process. This is further complicated by the time delay that is
inherently introduced by the continuous stage of the process between the
completion of the batch stage and any quality measurements obtained from the
final product.
In
this contribution, we focus on using data-driven modeling tools to define a framework for establishing causality between batch properties and continuous process. Subsequently, we will focus on the batch
monitoring, correlating batch to continuous data, and modeling the end quality
of the product using different set of training data.
Checkout
This paper has an Extended Abstract file available; you must purchase the conference proceedings to access it.
Do you already own this?
Log In for instructions on accessing this content.
Pricing
Individuals
AIChE Pro Members | $150.00 |
AIChE Graduate Student Members | Free |
AIChE Undergraduate Student Members | Free |
AIChE Explorer Members | $225.00 |
Non-Members | $225.00 |