(621bm) Fabrication of Glass-Based Microfluidic Devices with Dry Film Photoresists As Pattern Transfer Masks for Wet Etching
AIChE Annual Meeting
2015
2015 AIChE Annual Meeting Proceedings
Catalysis and Reaction Engineering Division
Poster Session: Catalysis and Reaction Engineering (CRE) Division
Wednesday, November 11, 2015 - 6:00pm to 8:00pm
A simple, cheap and rapid method is developed to fabricate glass-based microfluidic devices with dry film photoresists (DFR) as pattern transfer masks for wet etching. In this method, the DFR mask for wet etching can be easily achieved by a one-step lamination, and no expensive facilities and materials are used; therefore, both the difficulty and the cost of fabrication of glass microchips with etched microchannels are reduced greatly compared with those in conventional methods. With the DFR mask, massproduction of glass microchips can be achieved efficiently and controllably in general laboratories. The fabricated glass microfluidic devices feature very flexible design of microchannels, good chemical compatibility and optical properties, easy modification of channel surface wettability, mass producibility and satisfactory reproducibility. We demonstrate the utilities of fabricated glass microchips in the preparation of monodisperse water-in-oil (W/O) and oil-in-water (O/W) emulsions, and the formation of a stable laminar flow interface and concentration gradient in microchannels.